
Semi-Supervised Bootstrapping Relationship
Extractors with Distributional Semantics

David Soares Batista
Berlin, 2nd July 2017

Noam Chomsky was born in the East Oak Lane neighbourhood of
Philadelphia, Pennsylvania. In 1955, Chomsky become an assistant
professor at The Massachusetts Institute of Technology (MIT), a private
research university in Cambridge, Massachusetts.

Buzz Aldrin earned a Doctor of Science degree in Astronautics from
Massachusetts Institute of Technology.

Barack Obama graduate with a JD degree magna cum laude from Harvard
University, a private research university in Cambridge, Massachusetts.

Semantic Relationships

Semantic Relationships

Noam Chomsky was born in the East Oak Lane neighbourhood of
Philadelphia, Pennsylvania. In 1955, Chomsky become an assistant
professor at The Massachusetts Institute of Technology (MIT), a private
research university in Cambridge, Massachusetts.

Buzz Aldrin earned a Doctor of Science degree in Astronautics from
Massachusetts Institute of Technology.

Barack Obama graduate with a JD degree magna cum laude from Harvard
University, a private research university in Cambridge, Massachusetts.

<Noam Chomsky, born-in, East Oak Lane>
<East Oak Lane, part-of, Philadelphia>
<Philadelphia, part-of, Pennsylvania>

<Chomsky, affiliated-with, MIT>
<MIT, located-in, Cambridge>

<Cambridge, part-of, Massachusetts>
<Buzz Aldrin, studied-at, MIT>

<Barack Obama, studied-at, Harvard>
<Harvard, located-in, Cambridge>

Semantic Relationships

Knowledge Graphs for Question Answering

Who studied in Cambridge, Massachusetts ?

Which universities are located in Massachusetts ?

Outline

1. Approaches for Semantic Relationship Extraction
2. Semi-Supervised/Bootstrapping
3. Snowball: TF-IDF
4. BREDS: Word Embeddings
5. Experimental Evaluation

Approaches for Relationship Extraction

• Traditional Information Extraction: precise and pre-specified relationships

• Open IE: extracts all possible relationships with no pre-specified types

Approaches for Relationship Extraction

• Rule-based:

• high precision/low recall

• hand-made rules hard to maintain

• Supervised

• need training data

• types of relationships is limited

• Bootstrapping / Semi-supervised

• takes advantage of unlabelled data

• needs to handle semantic drift

• Distantly-supervised

• generates loads of training data

• how to filter out noisy sentences ?

Outline

1. Approaches for Semantic Relationship Extraction
2. Semi-Supervised/Bootstrapping
3. Snowball: TF-IDF
4. BREDS: Word Embeddings
5. Experimental Evaluation

Bootstrapping

“Google is headquartered in Mountain View”

• Unlabelled data is vast and abundant, bootstrapping approaches leverage on such data

• Use just a few seed instances of known relationships, e.g.: company headquarters

• Rely only on seed instances and contextual similarity

“AT&T based in Dallas”

“BMW main offices in Munich”

“Porsche main headquarters in Stuttgart”

“Soundcloud HQ in Berlin”

“Nokia base campus in Espoo”
similarity

General Architecture for Bootstrapping

1. Collect occurrence contexts for the seed instances.

2. Based on these contexts, generate extraction patterns.

3. Scan the documents using the patterns to match new relationship instances.

4. Newly extracted instances are then added to the seed set, and the process
is repeated until a certain stop criteria is met.

Bootstrapping for Semantic Relationship Extraction

Semantic Relationship Extraction

• DIPRE: Dual Iterative Pattern Relation Expansion, (Brin, 1999)

• Snowball: Extracting Relations from Large Plain-Text Collections (Agichtein and
Gravano, 2000; Yu and Agichtein, 2003)

• Espresso: Leveraging Generic Patterns for Automatically Harvesting Semantic Relations
(Pantel and Pennacchiotti, 2006)

Semantic lexicon acquisition: (late 90s)

• extract concepts or terms and the associated semantic class

• particular case of relationship extraction (i.e., is-a relationships)

• e.g.: biomedical categories for terms found in biomedical journals/papers

Outline

1. Approaches for Semantic Relationship Extraction
2. Semi-Supervised/Bootstrapping
3. Snowball: TF-IDF
4. BREDS: Word Embeddings
5. Experimental Evaluation

Snowball

“The tech company”

“is based in”
“capital of Germany”

0 2.3 0 0
0 0 3.3 0
0 0 0 2.5

1.1 0 0 0
0 0 3.3 0

0 0
1.1 0

0 0 3.3 0 0 0

0
0
0

BEF =
BET =
AFT =

Ti = < BEF, e1ORG, BET, e2LOC , AFT >

Snowball: Find Seed Matches

T
n

Build a TF-IDF vector for each context

• Single-pass clustering over all the collected tuples
Sim(Ti, Tj) = ↵·cos(BEFi, BEFj) + �·cos(BETi, BETj) + �·cos(AFTi, AFTj)

• Similarity threshold: ⌧sim

Snowball: Generating Extraction Patterns

• Compute mean for each context (BEF, BET, AFT) of all vectors
in a cluster

< BEF, e1ORG, BET , e1LOC , AFT >

Finding new relationships instances

Sim(Ti, Tj) = ↵·cos(BEFi, BEFj) + �·cos(BETi, BETj) + �·cos(AFTi, AFTj)

• Compute similarity of each with extraction patterns (centroids)

• Collect text segments containing entity pairs whose semantic
types match the seeds

<Google, Mountain View>
<Soundcloud, Berlin>

[..text..] ORG [..text..] LOC [..text..]

BEF BET AFT

• Extract new instance if above threshold ⌧sim

Finding new relationships instances

X = “main headquarters in”
Y = “is based in”
X = “has offices in”

cos_sim(X, Y) = 0
cos_sim(X, Z) = 0
cos_sim(Y, Z) = 0

• Unless there is a common dimension cosine similarity will always be 0

• Missing related matches due to TF-IDF limitation

0 2.3 0 0
0 0 3.3 0

1.1 0 0 2.5

1.1 0 0 0
0 0 3.1 0

0 0
0 0

0 0 0 0 0 0

0
0
0

cos_sim(“headquarters”, ”based”) = 0.76
cos_sim(“based”, ”headquartered”) = 0.70

cos_sim(“headquarters”, ”headquartered”) = 0.80

Word Embeddings

• Distributional semantics: based on co-occurrence contexts

• Snowball architecture expects a single vector per context.

• How to represent each context as a single vector?

Outline

1. Approaches for Semantic Relationship Extraction
2. Semi-Supervised/Bootstrapping
3. Snowball: TF-IDF
4. BREDS: Word Embeddings
5. Experimental Evaluation

BREDS: Bootstrapping Relationship
Instances with Distributional Semantics

keep te same architecture

BREDS: Find Seed Matches

Try to find in BET context:

• a verb (e.g., invented)

• a verb followed by a preposition (e.g., located in)
• a verb followed by nouns, adjectives, or adverbs

ending in a preposition (e.g., has atomic weight of)

“Soundcloud online audio platform is based in Berlin, Germany”

ReVerb (Fader et al. 2011)

BREDS: Find Seed Matches

Try to find in BET context:

• a verb (e.g., invented)

• a verb followed by a preposition (e.g., located in)
• a verb followed by nouns, adjectives, or adverbs

ending in a preposition (e.g., has atomic weight of)

“Soundcloud online audio platform is based in Berlin, Germany”

ReVerb (Fader et al. 2011)

BREDS: Find Seed Matches

Try to find in BET context:

• a verb (e.g., invented)

• a verb followed by a preposition (e.g., located in)
• a verb followed by nouns, adjectives, or adverbs

ending in a preposition (e.g., has atomic weight of)

“Soundcloud online audio platform is based in Berlin, Germany”

ReVerb (Fader et al. 2011)

“Today, John Flower, the new CEO of Coffee Inc., announced that ...”

BREDS: Find Seed Matches

Try to find in BET context:

• a verb (e.g., invented)

• a verb followed by a preposition (e.g., located in)
• a verb followed by nouns, adjectives, or adverbs

ending in a preposition (e.g., has atomic weight of)

“Soundcloud online audio platform is based in Berlin, Germany”

ReVerb (Fader et al. 2011)

“Today, John Flower the new CEO of Coffee Inc., announced that ...”

BREDS: Find Seed Matches

 Transform each context into a single embedding vector:

• Removes stop-words and adjectives
• Sum the embeddings of each word

BREDS: Find Seed Matches

<NULL, Soundcloud, “is based in”, Berlin, “Germany”>

<Today, John Flower, “the new CEO of”, Coffee Inc., “announced that”>

• Removes stop-words and adjectives
• Sum the embeddings of each word

 Transform each context into a single embedding vector:

BREDS: Find Seed Matches

<NULL, Soundcloud, “is based in”, Berlin, “Germany”>

<Today, John Flower, “the new CEO of”, Coffee Inc., “announced that”>

• Removes stop-words and adjectives
• Sum the embeddings of each word

 Transform each context into a single embedding vector:

BREDS: Find Seed Matches

<NULL, Soundcloud, “based”, Berlin, “Germany”>

<Today, John Flower, “CEO”, Coffee Inc., “announced that”>

• Removes stop-words and adjectives
• Sum the embeddings of each word

 Transform each context into a single embedding vector:

BREDS: Find Seed Matches

<NULL, Soundcloud, “based”, Berlin, “Germany”>

<Today, John Flower, “CEO”, Coffee Inc., “announced that”>

• Removes stop-words and adjectives
• Sum the embeddings of each word

BEF =
BET =
AFT =

Ti = < BEF, e1ORG, BET, e2LOC , AFT >

T
n

NULL
E(“based”)
E(“Germany”)

BEF =
BET =
AFT =

E(“Today”)
E(“CEO”)
E(“announced) + E(“that”)

 Transform each context into a single embedding vector:

Similarity between an instance and a cluster:
• maximum of all the similarities between any of the instances in a cluster, if

the majority of the similarity scores is higher than
• 0 otherwise

⌧sim

BREDS: Generating Extraction Patterns

Single-pass clustering over all the collected tuples

Sim(Ti, Tj) = ↵·cos(BEFi, BEFj) + �·cos(BETi, BETj) + �·cos(AFTi, AFTj)

No means are computed

BREDS: Bootstrapping Relationship
Instances with Distributional Semantics

keep te same architecture

Find Relationship Instances

• If similarity between a tuple and an extraction pattern is equal or above

• Extract the instance and update the confidence score of the pattern

⌧sim

• Collect all segments of text containing entity pairs whose semantic types
match the seeds

<Google, Mountain View>

<Soundcloud, Berlin>

[..text..] ORG [..text..] LOC [..text..]

BEF BET AFT

Find Relationship Instances: scoring patterns

• For each extracted instance, keep track of the pattern(s) that
extracted it and the similarity score(s) - used ahead to compute
instance confidence score

• For each extracted instance, <e1, e2>:

• NEGATIVE: if e1 is in the seed set, and the associated e2 does
not correspond to the e2 in the extracted relationship:

• POSITIVE: if e1 is in the seed set, and the associated e2
correspond to the e2 in the extracted relationship:

• UNKNWON: e1 is not in the seed set

BREDS: Bootstrapping Relationship
Instances with Distributional Semantics

keep te same architecture

Semantic Drift

<Google, Mountain View>

Happens when relationships instances, where seed occurs, but with different
semantics are added to the seed set:

“Google’s headquarters in Mountain View”

• Leads to generating extraction patterns that target other relationship types.

• Errors propagate, the semantics of the extracted relationships rapidly drifts
away from the original.

“Google, based in Mountain View”

“Google’s shareholders meeting in Mountain View”

Handle Semantic Drift: scoring instances

• Rank the extracted instances according to a confidence metric:

• is the set of patterns that extracted a relationship i

• C is the textual context of an instance
Conf◆(i) � ⌧min

• Add to the seed set all instances with a confidence
score above a certain threshold ⌧min

BREDS: Bootstrapping Relationship
Instances with Distributional Semantics

Outline

1. Approaches for Semantic Relationship Extraction
2. Semi-Supervised/Bootstrapping
3. Snowball: TF-IDF
4. BREDS: Word Embeddings
5. Experimental Evaluation

Experimental Evaluation: setup

• Document collection: 5.5 millions news articles (1994-2010)

• Pre-processing: Python NLTK and Stanford NER (PER, LOC, ORG)

• Skip-gram Embeddings: skip_length=5 and vectors_dim=200

• Freebase (Knowledge Base): keep only the sentences containing
at least two entities mentioned in Freebase (1.2 million sentences)

• BREDS: Embeddings + selected words
• Snowball (ReVerb): TF-IDF w/ selected words
• Snowball (Classic): TF-IDF

• Parameters
⌧sim• : [0.5,…,1.0]

• : [0.5,…,1.0]⌧min

Experimental Evaluation: systems and seeds

Results

Results Analysis
• BREDS highest F1 scores due to a higher recall caused by the use of embeddings.

• Using only the BET context yields a higher performance than using BEF, BET, AFT.

Improvements
“The ICJ which is part of the UN is based in The Hague”

Improvements
“The ICJ which is part of the UN is based in The Hague”

Improvements
“The ICJ which is part of the UN is based in The Hague”

<UN, is based in, The Hague>

Improvements
“The ICJ which is part of the UN is based in The Hague”

<UN, is based in, The Hague>

Improvements
“The ICJ which is part of the UN is based in The Hague”

<UN, is based in, The Hague>

Compute syntactic dependencies

Improvements
Entity-Linking: disambiguation of an entity according to a knowlege-base

“George Bush”, “Bush”

Advantage over NER: can capture more contexts where the
same entity is mentioned.

https://github.com/davidsbatista/BREDS

https://github.com/davidsbatista/Snowball

Semi-Supervised Bootstrapping of Relationship Extractors with Distributional
Semantics David S. Batista, Bruno Martins, and Mário J. Silva EMNLP'15

Thank you :-)

http://davidsbatista.net

https://github.com/davidsbatista/BREDS
https://github.com/davidsbatista/Snowball
http://davidsbatista.net/assets/documents/publications/breds-emnlp_15.pdf
http://davidsbatista.net

Addendum

“Automatic Evaluation of Relation Extraction Systems on Large-scale” (Bronzi et al. 2012)

Evaluation Framework
• a: correct relationships from system output not in KB
• b: intersection between system output and KB
• c: KB relationships in the corpus but not extracted by

the system
• d:relationships in the corpus not extracted by the

system nor in the KBD: Knowledge Base, G ground truth,
S: system output

a: relationships only contain entities from the KB, so this intersection is trivial

b: Proximate PMI

c: Generate G’, all possible (i.e.: correct and incorrect) relationships at a sentence level and

estimate , then

d: Calculate Proximate PMI for all the relationships not in the database
G0 \D d = |G \D|� |a|, then

