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Relationship Extraction from Text

● Detection and classification of semantic relations between pairs of entities:

Nanjing is the capital of Jiangsu province. (LOCATION capital-of LOCATION)

Jimi Hendrix was born in Seattle in 1942.  (PERSON place-of-birth LOCATION)

● Domain-specific: known relations a priori

– Supervised
– Features : lexical, syntactic and semantic information
– Kernel : explore input representations exhaustively 

● No need to explicitly representing the features
● CPU and memory demanding!

● Open-domain: unknown relations a priori

– Unsupervised (based on hand-made rules)
– Large datasets



  

The Relationship Extraction Task

“Joe said that Margaret Thatcher died on the morning of 8 April in 
London after suffering a stroke.”

● Possible relations:

– Joe → Margaret Thatcher → NOT-RELATED
– Margaret Thatcher → Joe → NOT-RELATED
– Joe → London → NOT-RELATED
– London → Joe → NOT-RELATED
– Margaret Thatcher → London → DEATH-PLACE
– London → Margaret Thatcher → PLACE-OF-DEATH

● Classify pairs of named entities according to the type of semantic 
relation class



  

Proposed Method

● New method based on weighted kNN classification

● Supervised
● Scalable (not CPU or memory demanding) but still 

achieves competitive accuracy
● Based Jaccard similarity between relation instances

– Use min-hash to approximate Jaccard similarity
– Use locality sensitive hashing to find kNN instances

● Classification based on weighted votes from kNN instances
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Representing Relation Instances

“Joe said that Margaret Thatcher died on the morning of 8 April in London after 
suffering a stroke.”

● The relation instance Margaret Thatcher → London can be represented as 
follows:

 

● BEFORE-BETWEEN – tokens before and between the related entities

– Joe said that Margaret Thatcher died on the morning of 8 April in

● BETWEEN – tokens between the related entities

– died on the morning of 8 April in

● BETWEEN-AFTER – tokens between and after the related entities

– died on the morning of 8 April in London after suffering a stroke.



  

The Considered Features

● Characters n-grams of size 4 

● Lexical features extracted with the MorphAdorner package:

● Verbs (normalized)

● Prepositions (e.g., between, above, within, etc.)
● Verbs in the past participle (passive voice can indicate direction of relation)

– Harry ate six shrimps at dinner. (active)
– At dinner, six shrimps were eaten by Harry. (passive)

● ReVerb pattern - Verbs, followed by nouns, adjectives or adverbs, and ending 
in a preposition (e.g., was the guitar player of, died on the)

● Window of 3 tokens for BEFORE-BETWEEN and BETWEN-AFTER

● Features (e.g., tokens) from each of the three groups are considered different

● Also experimented : VerbNet, WordNet, Levin verb classes

● No major improvements on the results and more time to process ...
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Min-Hash

● Technique for quickly estimating how similar two sets are.

● Invented by Andrei Broder (1997) and initially used in the AltaVista 
search engine to detect duplicate web pages and eliminate them 
from search results.

● Gives an approximation of Jaccard similarity measure between two 
given sets.



  

Min-Hash Signatures
● hash_func(x) maps members of S1 and S2 to distinct integers

● h_min(S) is the member x of S with the minimum value of h(x)

● The probability that both sets share the same minimum hash 
value is equal to the ratio of their common elements to their 
total elements

● If r is a random variable that is 1 when h_min(A) = h_min(B) 
and zero otherwise, then r is an unbiased estimator of J(S1,S2)



  

Locality-Sensitive Hashing for 
Min-Hash Signatures

● Instances represented as min-hash signatures:

[h1_min(S1), h2_min(S1), ..., hk_min(S1)]

● Divide each signature into L bands

– Band 1 = hash ( [h1_min(S1), h2_min(S1)] )
– Band 2 = …
– Band L = hash ( [hk-1_min(S1), hk_min(S1)] )

● Each band corresponds to an n-tuple from the min-hash signatures
● An index is built with L different hash tables, each corresponding to 

an n-tuple from the min-hash signatures
● Candidate similar instances are those with a band in common



  

Confusing ?

● “Mining of Massive Datasets” 
(Rajaraman, Anand, and Jeffrey David 
Ullman. Cambridge University Press, 2012)

→ “Chapter 3: Finding Similar Items”

● Available for free at:

http://infolab.stanford.edu/~ullman/mmds.html

( much more: graph analysis, clustering, 
dimensionality reduction, etc.)

http://infolab.stanford.edu/~ullman/mmds.html
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Indexing

● Given a set of annotated relation instances

– Generate groups:
● BEFORE-BETWEEN
● BETWEEN
● BETWEEN-AFTER

– Extract features
– Calculate min-hash signatures
– Min-hash signatures splitted and hashed into L bands



  

Classification

● Given a new sentence with tagged named entities:
– Generate groups:

● BEFORE-BETWEEN
● BETWEEN
● BETWEEN-AFTER

– Extract features
– Calculate min-hash signatures
– Indexed relationships instances with at least one common band are candidates
– Estimate Jaccard similarity with the available min-hash signatures

● Each of the kNN nearest neighbours votes with his semantic class
● Each vote is weighted according to the similarity towards the instance
● The semantic class with the higher score is assigned



  

Weighted kNN classification

● Given an new instance X to be classified and the top-5 
more similar relations:

● 1st  place-of-birth (0.53)
● 2nd  place-of-death (0.48)
● 3rd  place-of-death (0.45)
● 4th  place-of-death (0.42)
● 5th  place-of-death (0.41)

● X will be classifed as place-of-death, which is more frequent, 
higher vote.
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Experiments

● Test with 3 different datasets/domains
● SemEval 2010 – relations between nominals
● AImed – interactions between human proteins
● Wikipedia – relations between named entities

● Varying 3 parameters:
● Size of min-hash signatures
● Number of bands in LSH
● Number of k nearest neighbours



  

Datasets - Statistical Characterization

● SemEval – 10,717 sentences and 19 classes

● Wikipedia – 3,125 sentences and 47 classes
● Significantly skewed in the class distribution

● AImed – 2,202 sentences and 2 classes



  

Results



  

Results Per Class (SemEval)
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Scalability - Indexing (SemEval)



  

Scalability - Classification (SemEval)



  

Outline

● Introduction: Relationship Extraction Task
● Proposed Method

1. Representing Relations Instances as Features

2. Min-Hash/Locality-Sensitive Hashing

3. Complete process: Indexing / Classification

4. Experiments: Datasets and Results

5. Scalability: Indexing and Classification

6. Conclusions and Future work 



  

Conclusions
SemEval 2010 F1 scores:

● Best system: 0.82
● Second best: 0.77
● Median score: 0.68 
● Our best score: 0.69 (172s feature extraction + indexing + classification )
● Participating systems used extra resources:

– Google’s n-gram, Cyc, WordNet, Roget’s Taxonomy, or Levin’s verb classes

● AImed dataset F1 scores:

● Sub-sequence kernel from Bunescu and Mooney: 0.54
● All-dependency-paths kernel from Airola et al.: 0.56  ( 4 521 seconds )
● Our best score 0.52 (161s feature extraction + indexing + classification )

● Linear Scalable 
● Not CPU or memory demanding
● Still achieves competitive accuracy



  

Conclusions

● Advantages over kernel methods:

● Simple: 

– mostly based on extracting n-grams and POS tags
– (almost) language independent, needs POS-tagger

● Online: to consider new training examples, we only 
need to compute their min-hash signatures and index

● Scalable: kNN search is made efficiently



  

Future Work

● Experiments with more datasets
● Dataset from the ACE evaluation campaign

● Other similarity search techniques
● Graph-based representations (from lexical information and 

from constituency/dependency parsing) 
● Minwise hashing methods for comparing graphs
● b-bit minwise hashing approach for improving storage 

efficiency on very large datasets
● extension proposed by Chum et al. for approximating 

weighted set similarity measures



  

Thank you!

谢谢 [xie xie]

:-)

Questions?
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