A Minwise Hashing Method for Addressing Relationship Extraction from Text

David S. Batista, Rui Silva, Bruno Martins and Mário J. Silva

Instituto Superior Técnico and INESC-ID, University of Lisbon, Portugal

Relationship Extraction from Text

- Detection and classification of semantic relations between pairs of entities: Nanjing is the capital of Jiangsu province. (LOCATION capital-of LOCATION) Jimi Hendrix was born in Seattle in 1942. (PERSON place-of-birth LOCATION)
 - **Domain-specific**: known relations *a priori*
 - Supervised
 - Features : lexical, syntactic and semantic information
 - Kernel : explore input representations exhaustively
 - No need to explicitly representing the features
 - CPU and memory demanding!
 - **Open-domain:** unknown relations *a priori*
 - Unsupervised (based on hand-made rules)
 - Large datasets

The Relationship Extraction Task

"**Joe** said that **Margaret Thatcher** died on the morning of 8 April in **London** after suffering a stroke."

- Possible relations:
 - Joe \rightarrow Margaret Thatcher \rightarrow NOT-RELATED
 - Margaret Thatcher \rightarrow Joe \rightarrow NOT-RELATED
 - Joe \rightarrow London \rightarrow NOT-RELATED
 - London \rightarrow Joe \rightarrow NOT-RELATED
 - Margaret Thatcher \rightarrow London \rightarrow DEATH-PLACE
 - London \rightarrow Margaret Thatcher \rightarrow PLACE-OF-DEATH
- Classify pairs of named entities according to the type of semantic relation class

Proposed Method

- New method based on weighted kNN classification
 - Supervised
 - Scalable (not CPU or memory demanding) but still achieves competitive accuracy
 - Based Jaccard similarity between relation instances
 - Use min-hash to approximate Jaccard similarity
 - Use locality sensitive hashing to find *kNN* instances
 - Classification based on weighted votes from *kNN* instances

- Introduction: Relationship Extraction Task
- Proposed Method
- 1. Representing Relations Instances as Features
- 2. Min-Hash/Locality-Sensitive Hashing
- 3. Complete process: Indexing / Classification
- 4. Experiments: Datasets and Results
- 5. Scalability: Indexing and Classification
- 6. Conclusions and Future work

Representing Relation Instances

"**Joe** said that **Margaret Thatcher** died on the morning of 8 April in **London** after suffering a stroke."

- The relation instance Margaret Thatcher → London can be represented as follows:
 - **BEFORE-BETWEEN** tokens before and between the related entities
 - Joe said that Margaret Thatcher died on the morning of 8 April in
 - **BETWEEN** tokens between the related entities
 - died on the morning of 8 April in
 - **BETWEEN-AFTER** tokens between and after the related entities
 - died on the morning of 8 April in **London** after suffering a stroke.

The Considered Features

- Characters n-grams of size 4
- Lexical features extracted with the *MorphAdorner* package:
 - Verbs (normalized)
 - Prepositions (e.g., *between*, *above*, *within*, *etc.*)
 - Verbs in the past participle (passive voice can indicate direction of relation)
 - Harry ate six shrimps at dinner. (active)
 - At dinner, six shrimps were eaten by Harry. (passive)
 - ReVerb pattern Verbs, followed by nouns, adjectives or adverbs, and ending in a preposition (e.g., *was the guitar player of, died on the*)
- Window of 3 tokens for BEFORE-BETWEEN and BETWEN-AFTER
- Features (e.g., tokens) from each of the three groups are considered different
- Also experimented : VerbNet, WordNet, Levin verb classes
 - No major improvements on the results and more time to process ...

- Introduction: Relationship Extraction Task
- Proposed Method
- 1. Representing Relations Instances as Features
- 2. Min-Hash/Locality-Sensitive Hashing
- 3. Complete process: Indexing / Classification
- 4. Experiments: Datasets and Results
- 5. Scalability: Indexing and Classification
- 6. Conclusions and Future work

Min-Hash

- Technique for quickly estimating how similar two sets are.
- Invented by Andrei Broder (1997) and initially used in the AltaVista search engine to detect duplicate web pages and eliminate them from search results.
- Gives an approximation of Jaccard similarity measure between two given sets.

$$J(S_1, S_2) = \frac{|S_1 \cap S_2|}{|S_1 \cup S_2|} = \frac{|S_1 \cap S_2|}{|S_1| + |S_2| - |S_1 \cap S_2|}$$

Min-Hash Signatures

- *hash_func(x)* maps members of *S1* and *S2* to distinct integers
- $h_{min}(S)$ is the member x of S with the minimum value of h(x)
- The probability that both sets share the same minimum hash value is equal to the ratio of their common elements to their total elements

$$\pi: \Omega \longrightarrow \Omega \quad \text{, where} \quad \Omega = \{1, 2, \dots, D\}.$$
$$\Pr\left(\min(\pi(S_1)) = \min(\pi(S_2))\right) = \frac{|S_1 \cap S_2|}{|S_1 \cup S_2|} = \mathcal{J}(S_1, S_2)$$

 If r is a random variable that is 1 when h_min(A) = h_min(B) and zero otherwise, then r is an unbiased estimator of J(S1,S2)

$$\hat{J}(S_1, S_2) = \frac{1}{k} \sum_{j=1}^k 1(\min(\pi_k(S_1))) = \min(\pi_k(S_2)))$$

Locality-Sensitive Hashing for Min-Hash Signatures

• Instances represented as min-hash signatures:

```
[h1_min(S1), h2_min(S1), ..., hk_min(S1)]
```

- Divide each signature into *L* bands
 - Band $1 = hash ([h1_min(S1), h2_min(S1)])$
 - Band 2 = ...
 - Band L = hash ($[hk-1_min(S1), hk_min(S1)]$)
- Each band corresponds to an *n*-tuple from the min-hash signatures
- An index is built with *L* different hash tables, each corresponding to an *n*-tuple from the min-hash signatures
- Candidate similar instances are those with a band in common

Confusing ?

Mining of Massive Datasets

Anand Rajaraman Jeffrey David Ullman

- "Mining of Massive Datasets" (Rajaraman, Anand, and Jeffrey David Ullman. Cambridge University Press, 2012)
 - \rightarrow "Chapter 3: Finding Similar Items"
- Available for free at:

http://infolab.stanford.edu/~ullman/mmds.html

(much more: graph analysis, clustering, dimensionality reduction, etc.)

- Introduction: Relationship Extraction Task
- Proposed Method
- 1. Representing Relations Instances as Features
- 2. Min-Hash/Locality-Sensitive Hashing
- 3. Complete process: Indexing / Classification
- 4. Experiments: Datasets and Results
- 5. Scalability: Indexing and Classification
- 6. Conclusions and Future work

Indexing

- Given a set of annotated relation instances
 - Generate groups:
 - BEFORE-BETWEEN
 - BETWEEN
 - BETWEEN-AFTER
 - Extract features
 - Calculate min-hash signatures
 - Min-hash signatures splitted and hashed into L bands

Classification

- Given a new sentence with tagged named entities:
 - Generate groups:
 - BEFORE-BETWEEN
 - BETWEEN
 - BETWEEN-AFTER
 - Extract features
 - Calculate min-hash signatures
 - Indexed relationships instances with at least one common band are candidates
 - Estimate Jaccard similarity with the available min-hash signatures
- Each of the *kNN* nearest neighbours votes with his semantic class
- Each vote is weighted according to the similarity towards the instance
- The semantic class with the higher score is assigned

Weighted kNN classification

- Given an new instance X to be classified and the top-5 more similar relations:
 - 1st place-of-birth (0.53)
 - 2nd place-of-death (0.48)
 - 3rd place-of-death (0.45)
 - 4th place-of-death (0.42)
 - 5th place-of-death (0.41)
- X will be classifed as *place-of-death*, which is more frequent, higher vote.

- Introduction: Relationship Extraction Task
- Proposed Method
- 1. Representing Relations Instances as Features
- 2.-Min-Hash/Locality-Sensitive Hashing
- 3. Complete process: Indexing / Classification
- 4. Experiments: Datasets and Results
- 5. Scalability: Indexing and Classification
- 6. Conclusions and Future work

Experiments

- Test with 3 different datasets/domains
 - SemEval 2010 relations between nominals
 - Almed interactions between human proteins
 - Wikipedia relations between named entities

- Varying 3 parameters:
 - Size of min-hash signatures
 - Number of bands in LSH
 - Number of *k* nearest neighbours

Datasets - Statistical Characterization

	SemE	lval	Wikip	Wikipedia		
	Train	Test	Train	Test	Data	
# Sentences	8,000	2,717	$2,\!199$	926	2,202	
# Terms	$137,\!593$	$46,\!873$	49,721	$20,\!656$	$75,\!878$	
# Relation classes	19	19	47	47	2	
# Relation instances (except $not-related/other$)	$6,\!590$	2,263	$15,\!963$	$6,\!386$	1,000	
# Nominals	16,001	$5,\!434$	5,468	2,258	4,084	
Avg. sentence length (terms)	119.8	119.4	177.2	172.8	184.2	
StDev. sentence length (terms)	45.0	44.4	104.5	100.1	98	
Avg. instances/class	421	143	295.6	135.9	1,961.5	
StDev. instances/class	317.5	105.5	1707.3	728.2	$1,\!372.5$	
Max. instances/class (except not-related/other)	844	22	268	113	1,000	
Min. instances/class	1	1	1	1	1,000	

- SemEval 10,717 sentences and 19 classes
- Wikipedia 3,125 sentences and 47 classes
 - Significantly skewed in the class distribution
- Almed 2,202 sentences and 2 classes

Results

	Min	1 kNN			3 kNN			5 kNN			$7 \mathrm{kNN}$		
Dataset	Hash	Р	R	F1	Р	R	F1	Р	R	F1	Р	R	F1
	200/25	0.662	0.622	0.641	0.683	0.642	0.662	0.698	0.652	0.674	0.698	0.637	0.666
	200/50	0.662	0.621	0.640	0.683	0.643	0.662	0.698	0.651	0.673	0.698	0.636	0.666
	400/25	0.664	0.636	0.650	0.685	0.668	0.676	0.708	0.672	0.690	0.691	0.667	0.679
$\operatorname{SemEval}$	400/50	0.663	0.635	0.649	0.684	0.664	0.674	0.708	0.674	0.690	0.694	0.670	0.682
(18 classes)	600/25	0.657	0.631	0.644	0.677	0.660	0.669	0.697	0.674	0.685	0.695	0.660	0.677
	600/50	0.657	0.631	0.644	0.676	0.658	0.667	0.699	0.678	0.688	0.694	0.664	0.678
	800/25	0.654	0.630	0.642	0.675	0.656	0.665	0.694	0.662	0.678	0.696	0.658	0.677
	800/50	0.654	0.632	0.643	0.677	0.658	0.667	0.698	0.665	0.681	0.696	0.658	0.676
20 20 40 Wikipedia 40	200/25	0.410	0.336	0.369	0.434	0.335	0.378	0.439	0.310	0.363	0.489	0.323	0.389
	200/50	0.409	0.336	0.369	0.435	0.336	0.379	0.440	0.310	0.364	0.489	0.321	0.387
	400/25	0.453	0.350	0.394	0.472	0.354	0.405	0.507	0.348	0.413	0.485	0.323	0.388
	400/50	0.450	0.349	0.393	0.468	0.354	0.403	0.503	0.350	0.412	0.509	0.328	0.399
(46 classes)	600/25	0.419	0.344	0.378	0.439	0.352	0.391	0.492	0.364	0.419	0.522	0.365	0.430
	600/50	0.419	0.343	0.377	0.444	0.354	0.394	0.485	0.353	0.408	0.532	0.353	0.425
	800/20	0.416	0.344	0.377	0.431	0.348	0.385	0.493	0.351	0.410	0.513	0.343	0.411
	800/50	0.419	0.345	0.378	0.433	0.350	0.387	0.515	0.346	0.414	0.517	0.338	0.409
AImed 4 (1 class) 6 8	200/25	0.405	0.545	0.465	0.430	0.509	0.466	0.480	0.484	0.482	0.507	0.460	0.482
	200/50	0.405	0.545	0.465	0.430	0.509	0.466	0.480	0.484	0.482	0.507	0.460	0.482
	400/25	0.420	0.589	0.491	0.451	0.554	0.497	0.481	0.524	0.501	0.516	0.502	0.509
	400/50	0.420	0.588	0.490	0.455	0.561	0.502	0.484	0.529	0.505	0.519	0.505	0.512
	600/25	0.409	0.605	0.488	0.445	0.571	0.500	0.475	0.529	0.500	0.511	0.513	0.512
	600/50	0.409	0.605	0.488	0.445	0.571	0.500	0.475	0.530	0.501	0.511	0.513	0.512
	800/25	0.416	0.613	0.496	0.453	0.595	0.514	0.481	0.547	0.512	0.490	0.512	0.501
	800/50	0.418	0.614	0.498	0.454	0.596	0.515	0.482	0.545	0.511	0.489	0.514	0.501

Results Per Class (SemEval)

	Instances	Asy	mmetrica	al	Symmetrical			
Direction	(train/test)	Precision	Recall	F1	Precision	Recall	F1	
(e1, e2)	344/134	0.843	0.843	0.843	0.798	0.902	0.847	
(e2,e1)	659/194	0.735	0.902	0.810				
(e1, e2)	470/162	0.572	0.759	0.653	0.628	0.670	0.648	
(e2,e1)	150/129	0.609	0.520	0.561	0.028	0.070	0.040	
(e1, e2)	844/291	0.744	0.911	0.819	0.747	0.901	0.817	
(e2,e1)	1/1	1.000	0.000	0.000	0.141		0.017	
(e1,e2)	568/211	0.789	0.815	0.802	0.756	0.795	0.775	
(e2,e1)	148/47	0.667	0.723	0.694	0.100			
(e1,e2)	323/108	0.670	0.602	0.634	0.673	0.589	0.628	
(e2,e1)	394/123	0.654	0.569	0.609	0.010			
(e1,e2)	78/32	0.778	0.438	0.560	0.767	0.777	0.772	
(e2,e1)	612/201	0.776	0.791	0.783	0.101	0.111	0.112	
(e1,e2)	490/210	0.751	0.733	0.742	0.778	0.778	0.778	
(e2,e1)	144/51	0.750	0.706	0.727	0.110			
(e1,e2)	374/153	0.726	0.778	0.751	0.706	0.802	0.751	
(e2,e1)	166/39	0.627	0.821	0.711	0.100			
(e1,e2)	97/22	0.429	0.545	0.480	0.605	0.667	0.634	
(e2,e1)	407/134	0.615	0.679	0.645	0.000	0.007		
	1410/454				0.442	0.293	0.352	
		0.708	0.674	0.690	0.718	0.764	0.740	
	Direction (e1,e2) (e2,e1) (e1,e2) (e2,e1) (e1,e2) (e2,e1) (e1,e2) (e2,e1) (e1,e2) (e2,e1) (e1,e2) (e2,e1) (e1,e2) (e2,e1) (e1,e2) (e2,e1) (e1,e2) (e2,e1) (e1,e2) (e2,e1) (e1,e2) (e2,e1)	$\begin{array}{c c} Instances\\ \hline Direction & (train/test)\\ \hline (e1,e2) & 344/134\\ (e2,e1) & 659/194\\ \hline (e1,e2) & 470/162\\ (e2,e1) & 150/129\\ \hline (e1,e2) & 844/291\\ \hline (e1,e2) & 568/211\\ \hline (e1,e2) & 568/211\\ \hline (e1,e2) & 323/108\\ \hline (e2,e1) & 148/47\\ \hline (e1,e2) & 323/108\\ \hline (e2,e1) & 394/123\\ \hline (e1,e2) & 78/32\\ \hline (e2,e1) & 612/201\\ \hline (e1,e2) & 490/210\\ \hline (e1,e2) & 374/153\\ \hline (e1,e2) & 374/153\\ \hline (e1,e2) & 97/22\\ \hline (e2,e1) & 166/39\\ \hline (e1,e2) & 97/22\\ \hline (e2,e1) & 407/134\\ \hline - & 1410/454\\ \hline - & - & - \\ \end{array}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{ c c c c c c c } \hline Instances & Asymmetrical & Symmetrical & F1 & Precision \\ \hline line(1) & (train/test) & Precision & Recall & F1 & Precision \\ \hline line(1) & 344/134 & 0.843 & 0.843 & 0.843 & 0.843 \\ \hline (e1,e2) & 344/134 & 0.843 & 0.843 & 0.843 & 0.798 \\ \hline (e1,e2) & 659/194 & 0.735 & 0.902 & 0.810 & 0.798 \\ \hline (e1,e2) & 470/162 & 0.572 & 0.759 & 0.653 & 0.628 \\ \hline (e1,e2) & 150/129 & 0.609 & 0.520 & 0.561 & 0.628 \\ \hline (e1,e2) & 844/291 & 0.744 & 0.911 & 0.819 & 0.747 \\ \hline (e2,e1) & 1/1 & 1.000 & 0.000 & 0.000 & 0.747 \\ \hline (e1,e2) & 568/211 & 0.789 & 0.815 & 0.802 & 0.756 \\ \hline (e1,e2) & 323/108 & 0.670 & 0.602 & 0.634 & 0.756 \\ \hline (e1,e2) & 394/123 & 0.654 & 0.569 & 0.609 & 0.673 \\ \hline (e1,e2) & 78/32 & 0.778 & 0.438 & 0.560 & 0.673 \\ \hline (e1,e2) & 394/123 & 0.751 & 0.733 & 0.742 & 0.767 \\ \hline (e1,e2) & 490/210 & 0.751 & 0.733 & 0.742 & 0.778 \\ \hline (e1,e2) & 374/153 & 0.726 & 0.778 & 0.751 & 0.706 \\ \hline (e1,e2) & 97/22 & 0.429 & 0.545 & 0.480 & 0.605 \\ \hline (e1,e2) & 97/22 & 0.429 & 0.545 & 0.480 & 0.605 \\ \hline (e1,e2) & 97/22 & 0.429 & 0.545 & 0.480 & 0.605 \\ \hline (e1,e2) & 97/22 & 0.429 & 0.545 & 0.480 & 0.605 \\ \hline (e1,e2) & 97/22 & 0.429 & 0.545 & 0.480 & 0.605 \\ \hline (e1,e2) & 97/22 & 0.429 & 0.545 & 0.480 & 0.605 \\ \hline (e1,e2) & 97/22 & 0.429 & 0.545 & 0.480 & 0.605 \\ \hline (e1,e2) & 97/22 & 0.429 & 0.545 & 0.480 & 0.605 \\ \hline (e1,e2) & 97/22 & 0.429 & 0.545 & 0.480 & 0.605 \\ \hline (e1,e2) & 97/24 & 0.708 & 0.679 & 0.645 \\ \hline (e1,e2) & 97/22 & 0.429 & 0.545 & 0.480 & 0.605 \\ \hline (e1,e2) & 97/22 & 0.429 & 0.545 & 0.480 & 0.605 \\ \hline (e1,e2) & 97/24 & 0.708 & 0.674 & 0.690 & 0.718 \\ \hline \end{array}$	$\begin{array}{ c c c c c c c } \hline \mbox{Instances} & Asymmetrical & F1 & Precision & Recall & F1 & Precision & Recall \\ \hline \mbox{Precision} & Recall & S1 & Precision & Recall \\ \hline \mbox{Precision} & 659/194 & 0.843 & 0.843 & 0.843 & 0.843 \\ (e2,e1) & 659/194 & 0.735 & 0.902 & 0.810 & 0.798 & 0.902 \\ (e1,e2) & 470/162 & 0.572 & 0.759 & 0.653 & 0.628 & 0.670 \\ (e1,e2) & 844/291 & 0.744 & 0.911 & 0.819 & 0.747 & 0.901 \\ (e1,e2) & 844/291 & 0.744 & 0.911 & 0.819 & 0.747 & 0.901 \\ (e1,e2) & 568/211 & 0.789 & 0.815 & 0.802 & 0.756 & 0.795 \\ (e2,e1) & 148/47 & 0.667 & 0.723 & 0.694 & 0.756 & 0.795 \\ (e1,e2) & 323/108 & 0.670 & 0.602 & 0.634 & 0.673 & 0.589 \\ (e2,e1) & 394/123 & 0.654 & 0.569 & 0.609 & 0.673 & 0.589 \\ (e1,e2) & 78/32 & 0.778 & 0.438 & 0.560 & 0.677 & 0.777 \\ (e1,e2) & 78/32 & 0.778 & 0.438 & 0.560 & 0.767 & 0.777 \\ (e1,e2) & 78/32 & 0.776 & 0.791 & 0.783 & 0.767 & 0.777 \\ (e1,e2) & 490/210 & 0.751 & 0.733 & 0.742 & 0.778 & 0.778 \\ (e1,e2) & 374/153 & 0.726 & 0.778 & 0.751 & 0.706 & 0.727 \\ (e1,e2) & 374/153 & 0.726 & 0.778 & 0.751 & 0.706 & 0.727 \\ (e1,e2) & 374/153 & 0.726 & 0.778 & 0.751 & 0.706 & 0.727 \\ (e1,e2) & 97/22 & 0.429 & 0.545 & 0.480 & 0.605 & 0.607 \\ (e2,e1) & 166/39 & 0.627 & 0.821 & 0.711 & 0.605 & 0.667 \\ (e2,e1) & 166/39 & 0.627 & 0.821 & 0.711 & 0.706 & 0.605 \\ (e2,e1) & 407/134 & 0.615 & 0.679 & 0.645 & 0.605 & 0.607 \\ (e2,e1) & 407/134 & 0.615 & 0.679 & 0.645 & 0.605 & 0.607 \\ (e1,e2) & 97/22 & 0.429 & 0.545 & 0.480 & 0.605 & 0.667 \\ (e2,e1) & 407/134 & 0.615 & 0.679 & 0.645 & 0.605 & 0.667 \\ (e1,e2) & 97/22 & 0.708 & 0.674 & 0.690 & 0.718 & 0.764 \\ (e1,e2) & 97/22 & 0.708 & 0.674 & 0.690 & 0.718 & 0.764 \\ (e1,e2) & 97/22 & 0.708 & 0.674 & 0.690 & 0.718 & 0.764 \\ (e1,e2) & 97/22 & 0.708 & 0.674 & 0.690 & 0.718 & 0.764 \\ (e1,e2) & 97/22 & 0.708 & 0.674 & 0.690 & 0.718 & 0.764 \\ (e1,e2) & 97/22 & 0.708 & 0.674 & 0.690 & 0.718 & 0.764 \\ (e1,e2) & 97/22 & 0.708 & 0.674 & 0.690 & 0.718 & 0.764 \\ (e1,e2) & 97/22 & 0.708 & 0.674 & 0.690 & 0.718 & 0.764 \\ (e1,e2) & 97/22 & 0.708 & 0.674 & 0.690 & 0.718$	

- Introduction: Relationship Extraction Task
- Proposed Method
- 1. Representing Relations Instances as Features
- 2.-Min-Hash/Locality-Sensitive Hashing
- 3. Complete process: Indexing / Classification
- 4. Experiments: Datasets and Results
- 5. Scalability: Indexing and Classification
- 6. Conclusions and Future work

Scalability - Indexing (SemEval)

Scalability - Classification (SemEval)

- Introduction: Relationship Extraction Task
- Proposed Method
- 1. Representing Relations Instances as Features
- 2.-Min-Hash/Locality-Sensitive Hashing
- 3. Complete process: Indexing / Classification
- 4. Experiments: Datasets and Results
- 5. Scalability: Indexing and Classification
- 6. Conclusions and Future work

Conclusions

SemEval 2010 F1 scores:

- Best system: 0.82
- Second best: 0.77
- Median score: 0.68
- Our best score: 0.69 (172s feature extraction + indexing + classification)
- Participating systems used extra resources:
 - Google's n-gram, Cyc, WordNet, Roget's Taxonomy, or Levin's verb classes

• Almed dataset F1 scores:

- Sub-sequence kernel from Bunescu and Mooney: 0.54
- All-dependency-paths kernel from Airola et al.: 0.56 (4 521 seconds)
- Our best score 0.52 (161s feature extraction + indexing + classification)
- Linear Scalable
- Not CPU or memory demanding
- Still achieves competitive accuracy

Conclusions

- Advantages over kernel methods:
 - Simple:
 - mostly based on extracting n-grams and POS tags
 - (almost) language independent, needs POS-tagger
 - **Online:** to consider new training examples, we only need to compute their min-hash signatures and index
 - **Scalable:** *kNN* search is made efficiently

Future Work

- Experiments with more datasets
 - Dataset from the ACE evaluation campaign
- Other similarity search techniques
 - Graph-based representations (from lexical information and from constituency/dependency parsing)
 - Minwise hashing methods for comparing graphs
 - *b*-bit minwise hashing approach for improving storage efficiency on very large datasets
 - extension proposed by Chum et al. for approximating weighted set similarity measures

Thank you! 谢谢 [xie xie] :-)

Questions?