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Model Management and 
Delivery

Welcome



ML Experiments Management 
and Workflow Automation

Experiment Tracking



● ML projects have far more branching and 

experimentation

● Debugging in ML is difficult and time consuming

● Small changes can lead to drastic changes in a 

model’s performance and resource 

requirements

● Running experiments can be time consuming 

and expensive

Why experiment tracking?



What does it mean to track experiments?

● Enable you to duplicate a result

● Enable you to meaningfully compare experiments

● Manage code/data versions, hyperparameters, environment, metrics

● Organize them in a meaningful way 

● Make them available to access and collaborate on within your 

organization



Simple Experiments with Notebooks

● Notebooks are great tools

● Notebook code is usually not promoted to 

production

● Tools for managing notebook code

○ nbconvert (.ipynb -> .py conversion)

○ nbdime (diffing)

○ jupytext (conversion+versioning)

○ neptune-notebooks 

(versioning+diffing+sharing)



Smoke testing for Notebooks

jupyter nbconvert --to script train_model.ipynb python train_model.py;

python train_model.py



Not Just One Big File

● Modular code, not monolithic

● Collections of interdependent and versioned files

● Directory hierarchies or monorepos

● Code repositories and commits



Tracking Runtime Parameters

Config files

data:

    train_path: '/path/to/my/train.csv'

    valid_path: '/path/to/my/valid.csv'

model:

    objective: 'binary' 

    metric: 'auc'

    learning_rate: 0.1

    num_boost_round: 200

    num_leaves: 60

    feature_fraction: 0.2

Command line

python train_evaluate.py \

    --train_path '/path/to/my/train.csv' \

    --valid_path '/path/to/my/valid.csv' \

    -- objective 'binary' \

    -- metric 'auc' \

    -- learning_rate 0.1 \

    -- num_boost_round 200 \

    -- num_leaves 60 \

    -- feature_fraction 0.2



parser = argparse.ArgumentParser()

parser.add_argument('--number_trees')

parser.add_argument('--learning_rate')

args = parser.parse_args()

neptune.create_experiment(params=vars(args))

...

# experiment logic

...

Log Runtime Parameters



ML Experiments Management 
and Workflow Automation

Tools for Experiment 
Tracking



Data Versioning

● Data reflects the world, and the world changes

● Experimental changes include changes in data

● Tracking, understanding, comparing, and duplicating experiments includes 

data



Tools for Data Versioning

● Neptune

● Pachyderm

● Delta Lake

● Git LFS

● DoIt

● lakeFS

● DVC

● ML-Metadata



Experiment tracking to compare results



Example: Logging metrics using TensorBoard

logdir = "logs/image/" + datetime.now().strftime("%Y%m%d-%H%M%S")
tensorboard_callback = keras.callbacks.TensorBoard(log_dir=logdir, histogram_freq=1)
cm_callback = keras.callbacks.LambdaCallback(on_epoch_end=log_confusion_matrix)
model.fit(... callbacks=[tensorboard_callback, cm_callback])



Organizing model development

● Search through & visualize all experiments

● Organize into something digestible

● Make data shareable and accessible

● Tag and add notes that will be meaningful to your team



Tooling for Teams



Tooling for Teams

Vertex TensorBoard

● Managed service with 
enterprise-grade security, 
privacy, and compliance

● Persistent, shareable link to your 
experiment dashboard

● Searchable list of all experiments 
in a project



● Creative iterations for ML experimentation

● Define a baseline approach

● Develop, implement, and evaluate to get metrics

● Assess the results, and decide on next steps

● Latency, cost, fairness, etc. 

Experiments are iterative in nature



ML Experiments Management 
and Workflow Automation

Introduction to MLOps



Data Scientists

● Often work on fixed datasets

● Focused on model metrics

● Prototyping on Jupyter notebooks

● Expert in modeling techniques and feature engineering

● Model size, cost, latency, and fairness are often ignored

Data Scientists vs. Software Engineers



Software Engineers

● Build  a product

● Concerned about cost, performance, stability, schedule

● Identify quality through customer satisfaction

● Must scale solution, handle large amounts of data

● Detect and handle error conditions, preferably automatically

● Consider requirements for security, safety, fairness

● Maintain, evolve, and extend the product over long periods

Data Scientists vs. Software Engineers



● Large datasets

● Inexpensive on-demand compute resources

● Increasingly powerful accelerators for ML

● Rapid advances in many ML research fields (such as computer vision, 

natural language understanding, and recommendations systems)

● Businesses are investing in their data science teams and ML capabilities to 

develop predictive models that can deliver business value to their 

customers

Growing Need for ML in Products and Services



Today’s perspective  

● Models blocked before 

deployment

● Slow to market

● Manual tracking

● No reproducibility or provenance

● Inefficient collaboration

● Unmonitored models

Key problems affecting ML efforts today

We’ve been here before 

● In the 90s, Software Engineering 

was siloed

● Weak version control, CI/CD 

didn’t exist

● Software was slow to ship;  now it 

ships in minutes

● Is that ML today?



● Continuous Integration (CI):  Testing and validating code, components, data, data 

schemas, and models

● Continuous Delivery (CD):  Not only about deploying a single software package or a 

service, but a system which automatically deploys another service (model prediction 

service)

● Continuous Training (CT):  A new process, unique to ML systems, that automatically 

retrains candidate models for testing and serving

● Continuous Monitoring (CM):  Catching errors in production systems, and 

monitoring production inference data and model performance metrics tied to 

business outcomes

Bridging ML and IT with MLOps



Continuous 
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Experimentation/
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ML Engineering/DevOps 
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● ML Lifecycle Management 

● Model Versioning & Iteration

● Model Monitoring and Management

● Model Governance

● Model Security

● Model Discovery

Standardizing ML processes with MLOps



MLOps Methodology

MLOps level 0



● The level of automation of ML pipelines determines the maturity of 

the MLOps process

● As maturity increases, the available velocity for the training and 

deployment of new models also increases

● Goal is to automate training and deployment of ML models into the 

core software system, and provide monitoring

What defines an MLOps process’ maturity?



MLOps level 0: Manual process
Manual, script-driven, interactive

Manual Experiment Steps

Data 
Preparation

Model 
Training

Model 
Evaluation 

Exploratory 
Data Analysis

Local 
data

Model
Analysis



MLOps level 0: Manual process
Disconnection between ML and operations
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MLOps level 0: Manual process
Less frequent releases, so no CI/CD
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Manual Experiment Steps

Data 
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Deployment and lack of active performance monitoring

How do you scale?



● Need for actively monitoring the quality of your model in production

● Retraining your production models with new data

● Continuously experimenting with new implementations to improve 

the data and model

Challenges for MLOps level 0



MLOps Methodology

MLOps levels 1 and 2



Rapid experimentation
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 Reusable, composable, and shareable components
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MLOps level 2: CI/CD pipeline automation



Serving and 
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MLOps Methodology

Developing components for 
an orchestrated workflow



● Pre-built and standard components, and 3 styles of custom components

● Components can also be containerized

● Examples of things you can do with TFX components:

○ Data augmentation, upsampling, or downsampling

○ Anomaly detection based on confidence intervals or autoencoder 

reproduction error

○ Interfacing with external systems like help desks for alerting and monitoring

○ … and more!

Orchestrate your ML workflows with TFX



Hello TFX



Component Specification

● The component's input and output contract

Executor Class

● Implementation of the component’s processing

Component Class

● Combines the specification with the executor to create a TFX component

Anatomy of a TFX Component



TFX components at runtime

Types of custom components

● Fully custom components combine the 

specification with the executor

● Python function-based components use 

a decorator and argument annotations

● Container-based components wrap the 

component inside a Docker container

Publisher

Executor

Metadata Store

Driver



@component

def MyValidationComponent(

    model: InputArtifact[Model],

    blessing: OutputArtifact[Model],

    accuracy_threshold: Parameter[int] = 10,

    ) -> OutputDict(accuracy=float):

  '''My simple custom model validation component.'''

  accuracy = evaluate_model(model)

  if accuracy >= accuracy_threshold:

    write_output_blessing(blessing)

  return {

    'accuracy': accuracy

  }

Python function-based components



from tfx.dsl.component.experimental import container_component

from tfx.dsl.component.experimental import placeholders

from tfx.types import standard_artifacts

grep_component = container_component.create_container_component(

    name='FilterWithGrep',

    inputs={'text': standard_artifacts.ExternalArtifact},

    outputs={'filtered_text': standard_artifacts.ExternalArtifact},

    parameters={'pattern': str},

    ...

)

Container-based components



grep_component = container_component.create_container_component(

    ...

    image='google/cloud-sdk:278.0.0',

    command=[

        'sh', '-exc',

        '''

          ...

        ''',

        '--pattern', placeholders.InputValuePlaceholder('pattern'),

        '--text', placeholders.InputUriPlaceholder('text'),

        '--filtered-text', 

placeholders.OutputUriPlaceholder('filtered_text'),

    ],

)

Container-based components



● Define custom component spec, executor class, and component class

● Component reusability

○ Reuse a component spec and implement a new executor that derives 

from an existing component

Fully custom components



class HelloComponentSpec(types.ComponentSpec):

  INPUTS = {

      # This will be a dictionary with input artifacts, including URIs

      'input_data': ChannelParameter(type=standard_artifacts.Examples),

  }

  OUTPUTS = {

      # This will be a dictionary which this component will populate

      'output_data': ChannelParameter(type=standard_artifacts.Examples),

  }

Defining input and output specifications

  PARAMETERS = {

      # These are parameters that will be passed in the call to create an instance of this component

      'name': ExecutionParameter(type=Text),

  }



class Executor(base_executor.BaseExecutor):

  def Do(self, input_dict: Dict[Text, List[types.Artifact]],

         output_dict: Dict[Text, List[types.Artifact]],

         exec_properties: Dict[Text, Any]) -> None:

    ...

    

Implement the executor



class Executor(base_executor.BaseExecutor):

    ...

    split_to_instance = {}

    for artifact in input_dict['input_data']:

      for split in json.loads(artifact.split_names):

        uri = os.path.join(artifact.uri, split)

        split_to_instance[split] = uri

    for split, instance in split_to_instance.items():

      input_dir = instance

      output_dir = artifact_utils.get_split_uri(

          output_dict['output_data'], split)

      for filename in tf.io.gfile.listdir(input_dir):

        input_uri = os.path.join(input_dir, filename)

        output_uri = os.path.join(output_dir, filename)

        io_utils.copy_file(src=input_uri, dst=output_uri, overwrite=True)

    

Implement the executor



from tfx.types import standard_artifacts

from hello_component import executor

class HelloComponent(base_component.BaseComponent):

  SPEC_CLASS = HelloComponentSpec

  EXECUTOR_SPEC = ExecutorClassSpec(executor.Executor)

Make the component pipeline-compatible



class HelloComponent(base_component.BaseComponent):

  ...

  def __init__(self,

               input_data: types.Channel = None,

               output_data: types.Channel = None,

               name: Optional[Text] = None):

    if not output_data:

      examples_artifact = standard_artifacts.Examples()

      examples_artifact.split_names = input_data.get()[0].split_names

      output_data = channel_utils.as_channel([examples_artifact])

    spec = HelloComponentSpec(input_data=input_data, output_data=output_data, name=name)

    super(HelloComponent, self).__init__(spec=spec)

Define the constructor

Completing the component class



def _create_pipeline():
  ...
  example_gen = CsvExampleGen(input_base=examples)

  hello = component.HelloComponent(
      input_data=example_gen.outputs['examples'], 

name='HelloWorld')

  statistics_gen = StatisticsGen(
examples=hello.outputs['output_data'])

  ...
  return pipeline.Pipeline(
      ...
      components=[example_gen, hello, statistics_gen, ...],
      ...
  )

Assemble into a TFX pipeline



Model Management and 
Deployment Infrastructure

Managing Model Versions



Why versioning ML Models?

Team 1

Team 2

Team 3

Version 
Control

Server

Code

Data

Config

Model version x



How ML Models are versioned?

ML Models versioning

● No uniform standard accepted yet

● Different organizations have different meanings and conventions

How software is versioned?

Version:   MAJOR.MINOR.PATCH

● MAJOR: Contains incompatible API changes

● MINOR: Adds functionality in a backwards compatible manner

● PATCH: Makes backwards compatible bug fixes



Version:   MAJOR.MINOR.PIPELINE

● MAJOR: Incompatibility in data or target variable

● MINOR: Model performance is improved

● PIPELINE: Pipeline of model training is changed

A Model Versioning Proposal



● Can ML framework be leveraged to retrieve previously trained models?

● ML framework may internally be versioning models

Retrieving  older models



● Artifacts: information needed to preprocess data and generate result 

(code, data, config, model) 

● ML orchestration frameworks may store operations and data artifacts to 

recreate model

● Post training artifacts and operations are usually not part of lineage

What is model lineage?

Code

Data

Config

Model version x



● Central repository for storing trained ML models

● Provides various operations of ML model development lifecycle

● Promotes model discovery, model understanding, and model reuse

● Integrated into OSS and commercial ML platforms

What is a model registry?

Metadata

Model

Artifacts

Parameters

Staging Production Archived

Model RegistryTrained Model



● Model versions

● Model serialized artifacts

● Free text annotations and structured properties

● Links to other ML artifact and metadata stores

Metadata stored by model registry

Metadata

Model

Artifacts

Parameters

Staging Production Archived

Model RegistryTrained Model



● Model search/discovery and understanding

● Approval/Governance

● Collaboration/Discussion

● Streamlined deployments

● Continuous evaluation and monitoring

● Staging and promotions

Capabilities Enabled by Model Registries



● Azure ML Model Registry

● SAS Model Manager

● MLflow Model Registry

● Google AI Platform

● Algorithmia

Examples of Model Registries



Model Management and 
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Continuous Delivery



Continuous 
Integration

Triggered when new code is pushed or committed

Performs unit and integration tests for the 

components

Build packages, container images, executables etc

Delivers the final packages to Continuous Delivery 

pipeline

What is Continuous Integration (CI)



Continuous 
Delivery

Deploys new code and trained models to the 

target environment

Checks the prediction service performance of 

the model before deploying

What is Continuous Delivery (CD)

Ensures compatibility of code and models with 

the target environment
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Unit testing in CI

Unit testing Data
Unit testing Model 

performance

● Testing that each component in the pipeline produces the expected artifacts.

Unit Testing in CI



Test valuesTest feature engineering logic

Test format

Input data

Unit Testing Input Data



Test  model methods

Model

Test the model performance 

metrics

Test to avoid inherent bias
Test to avoid NaN values, 

empty strings

Unit Testing Model Performance



Mocks of datasets 

are especially 
important for ML. 
They should cover 

edge and corner 
cases.

Mocking

Your mocks should 

sparsely cover the 
same space as your 
data, but with a 
much smaller 
dataset. 

Data Coverage

ML Unit Testing Considerations

Use code coverage 

libraries to make 
sure that you are not 
missing unit tests for 
any part of our code.

Code Coverage



TFX InfraValidator

● TFX InfraValidator takes the model, launches a sand-boxed model server with the model, 
and sees if it can be successfully loaded and optionally queried

● InfraValidator is using the same model server binary, same resources, and same server 
configuration as production

Infrastructure validation
When to apply infrastructure validation

● Before starting CI/CD as part of model training

● Can also occur as part of CI/CD as a last check to verify that the model is deployable to 
the serving infrastructure



Model Management and 
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Initial Stage

Deliver changes first to 
small, low risk audiences

    

Later Stage

Expand to larger riskier 
audience

Progressive Delivery is essentially an improvement over Continuous Delivery

● Decrease deployment risk

● Faster deployment

● Gradual rollout and 

ownership

Progressive Delivery



● You  can deploy multiple models performing same task

● Deploying competing models, as in A/B testing 

● Deploying as shadow models, as in Canary testing

Complex Model Deployment Scenarios



● No downtime

● Quick rollback & reliable

● Smoke testing in production 

environment

The diagrams are illustrations based on:
https://dev.to/mostlyjason/intro-to-deployment-strategies-blue-green-canary-and-more-3a3#

Blue/Green deployment

User Traffic

Code Version 1 (Blue) Code Version 2 (Green)

Load Balancer

https://dev.to/mostlyjason/intro-to-deployment-strategies-blue-green-canary-and-more-3a3#
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Version 2
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Live Experimentation

● Model metrics are usually not exact matches 

for business objectives

● Example: Recommender systems

○ Model trained on clicks

○ Business wants to maximize profit

○ Example: Different products have different 

profit margins



● Users are divided into two groups

● Users are randomly routed to different 

models in environment

● You gather business results from each 

model to see which one is performing 

better

Live Experimentation: A/B Testing

Client

Application

Model A Model B



Live Experimentation: A/B Testing 

The system randomly 
assigns people into 

two groups Relationship between the treatment received 
and the observed difference are analysed to 

validate the hypothesis 

Large use data is fed 
to the system

A

B



Live Experimentation: Multi-Armed Bandit (MAB)

● Uses ML to learn from test results during test

● Dynamically routes requests to winning 

models

● Eventually all requests are routed to one 

model

● Minimizes use of low-performing models



Live Experimentation: Contextual Bandit

● Similar to 

multi-armed bandit, 

but also considers 

context of request

● Example: Users in 

different climates


