
Copyright Notice
These slides are distributed under the Creative Commons License.

DeepLearning.AI makes these slides available for educational purposes. You may not use or
distribute these slides for commercial purposes. You may make copies of these slides and
use or distribute them for educational purposes as long as you cite DeepLearning.AI as the
source of the slides.

For the rest of the details of the license, see
https://creativecommons.org/licenses/by-sa/2.0/legalcode

http://deeplearning.ai/
http://deeplearning.ai/
https://creativecommons.org/licenses/by-sa/2.0/legalcode

Model Management and
Delivery

Welcome

ML Experiments Management
and Workflow Automation

Experiment Tracking

● ML projects have far more branching and

experimentation

● Debugging in ML is difficult and time consuming

● Small changes can lead to drastic changes in a

model’s performance and resource

requirements

● Running experiments can be time consuming

and expensive

Why experiment tracking?

What does it mean to track experiments?

● Enable you to duplicate a result

● Enable you to meaningfully compare experiments

● Manage code/data versions, hyperparameters, environment, metrics

● Organize them in a meaningful way

● Make them available to access and collaborate on within your

organization

Simple Experiments with Notebooks

● Notebooks are great tools

● Notebook code is usually not promoted to

production

● Tools for managing notebook code

○ nbconvert (.ipynb -> .py conversion)

○ nbdime (diffing)

○ jupytext (conversion+versioning)

○ neptune-notebooks

(versioning+diffing+sharing)

Smoke testing for Notebooks

jupyter nbconvert --to script train_model.ipynb python train_model.py;

python train_model.py

Not Just One Big File

● Modular code, not monolithic

● Collections of interdependent and versioned files

● Directory hierarchies or monorepos

● Code repositories and commits

Tracking Runtime Parameters

Config files

data:

 train_path: '/path/to/my/train.csv'

 valid_path: '/path/to/my/valid.csv'

model:

 objective: 'binary'

 metric: 'auc'

 learning_rate: 0.1

 num_boost_round: 200

 num_leaves: 60

 feature_fraction: 0.2

Command line

python train_evaluate.py \

 --train_path '/path/to/my/train.csv' \

 --valid_path '/path/to/my/valid.csv' \

 -- objective 'binary' \

 -- metric 'auc' \

 -- learning_rate 0.1 \

 -- num_boost_round 200 \

 -- num_leaves 60 \

 -- feature_fraction 0.2

parser = argparse.ArgumentParser()

parser.add_argument('--number_trees')

parser.add_argument('--learning_rate')

args = parser.parse_args()

neptune.create_experiment(params=vars(args))

...

experiment logic

...

Log Runtime Parameters

ML Experiments Management
and Workflow Automation

Tools for Experiment
Tracking

Data Versioning

● Data reflects the world, and the world changes

● Experimental changes include changes in data

● Tracking, understanding, comparing, and duplicating experiments includes

data

Tools for Data Versioning

● Neptune

● Pachyderm

● Delta Lake

● Git LFS

● DoIt

● lakeFS

● DVC

● ML-Metadata

Experiment tracking to compare results

Example: Logging metrics using TensorBoard

logdir = "logs/image/" + datetime.now().strftime("%Y%m%d-%H%M%S")
tensorboard_callback = keras.callbacks.TensorBoard(log_dir=logdir, histogram_freq=1)
cm_callback = keras.callbacks.LambdaCallback(on_epoch_end=log_confusion_matrix)
model.fit(... callbacks=[tensorboard_callback, cm_callback])

Organizing model development

● Search through & visualize all experiments

● Organize into something digestible

● Make data shareable and accessible

● Tag and add notes that will be meaningful to your team

Tooling for Teams

Tooling for Teams

Vertex TensorBoard

● Managed service with
enterprise-grade security,
privacy, and compliance

● Persistent, shareable link to your
experiment dashboard

● Searchable list of all experiments
in a project

● Creative iterations for ML experimentation

● Define a baseline approach

● Develop, implement, and evaluate to get metrics

● Assess the results, and decide on next steps

● Latency, cost, fairness, etc.

Experiments are iterative in nature

ML Experiments Management
and Workflow Automation

Introduction to MLOps

Data Scientists

● Often work on fixed datasets

● Focused on model metrics

● Prototyping on Jupyter notebooks

● Expert in modeling techniques and feature engineering

● Model size, cost, latency, and fairness are often ignored

Data Scientists vs. Software Engineers

Software Engineers

● Build a product

● Concerned about cost, performance, stability, schedule

● Identify quality through customer satisfaction

● Must scale solution, handle large amounts of data

● Detect and handle error conditions, preferably automatically

● Consider requirements for security, safety, fairness

● Maintain, evolve, and extend the product over long periods

Data Scientists vs. Software Engineers

● Large datasets

● Inexpensive on-demand compute resources

● Increasingly powerful accelerators for ML

● Rapid advances in many ML research fields (such as computer vision,

natural language understanding, and recommendations systems)

● Businesses are investing in their data science teams and ML capabilities to

develop predictive models that can deliver business value to their

customers

Growing Need for ML in Products and Services

Today’s perspective

● Models blocked before

deployment

● Slow to market

● Manual tracking

● No reproducibility or provenance

● Inefficient collaboration

● Unmonitored models

Key problems affecting ML efforts today

We’ve been here before

● In the 90s, Software Engineering

was siloed

● Weak version control, CI/CD

didn’t exist

● Software was slow to ship; now it

ships in minutes

● Is that ML today?

● Continuous Integration (CI): Testing and validating code, components, data, data

schemas, and models

● Continuous Delivery (CD): Not only about deploying a single software package or a

service, but a system which automatically deploys another service (model prediction

service)

● Continuous Training (CT): A new process, unique to ML systems, that automatically

retrains candidate models for testing and serving

● Continuous Monitoring (CM): Catching errors in production systems, and

monitoring production inference data and model performance metrics tied to

business outcomes

Bridging ML and IT with MLOps

Continuous
Training

Model Deployment
Continuous
Monitoring

Experimentation/
Development

Data Scientist/ML
Engineering

ML Engineering/Data
Scientist

ML Engineering/DevOps
Engineer

ML Engineering/DevOps
Engineer

ML Solution Lifecycle

● ML Lifecycle Management

● Model Versioning & Iteration

● Model Monitoring and Management

● Model Governance

● Model Security

● Model Discovery

Standardizing ML processes with MLOps

MLOps Methodology

MLOps level 0

● The level of automation of ML pipelines determines the maturity of

the MLOps process

● As maturity increases, the available velocity for the training and

deployment of new models also increases

● Goal is to automate training and deployment of ML models into the

core software system, and provide monitoring

What defines an MLOps process’ maturity?

MLOps level 0: Manual process
Manual, script-driven, interactive

Manual Experiment Steps

Data
Preparation

Model
Training

Model
Evaluation

Exploratory
Data Analysis

Local
data

Model
Analysis

MLOps level 0: Manual process
Disconnection between ML and operations

Manual Experiment Steps

Data
Preparation

Model
Training

Model
Evaluation

Model
Deployment

Exploratory
Data Analysis

Data Science IT

Local
data

Storage

Trained
Model

Model
Analysis

MLOps level 0: Manual process
Less frequent releases, so no CI/CD

Manual Experiment Steps

Data
Preparation

Model
Training

Model
Evaluation

Model
Deployment

Exploratory
Data Analysis

Data Science IT

Local
data

Storage

Trained
Model

Model
Analysis

Manual Experiment Steps

Data
Preparation

Model
Training

Model
Evaluation

Model
Deployment

Exploratory
Data Analysis

Data Science IT

Local
data

Storage

Trained
Model

Model
Analysis

Deployment and lack of active performance monitoring

How do you scale?

● Need for actively monitoring the quality of your model in production

● Retraining your production models with new data

● Continuously experimenting with new implementations to improve

the data and model

Challenges for MLOps level 0

MLOps Methodology

MLOps levels 1 and 2

Rapid experimentation

Development
datasets

Exploratory
Data

Analysis

Data
Prep.

Model
Training

Model
Eval.

Orchestrated Experiment

Data
Validation

Model
Valid.

MLOps level 1: ML pipeline automation

Source
Repository

Source
code

Data
Prep.

Model
Training

Model
Eval.

Pipeline
Deployment

Data
Analysis

Prediction
Service

experimentation/dev/test

staging/preprod/prod

ML Ops

Orchestrated Experiment

Data
Validation

Model
Valid.

Data
Prep.

Model
Training

Model
Eval.

Data
Validation

CD: Model
ServingModel

Valid.

Automated Pipeline

Trigger

Model
Analysis

Performance
Monitoring

Models
Registry

Source
repository

Source
code
Source
code
Source
code

Data
Extraction

Trained
Model

Feature
Store

Real-time feature fetching

Offline
extract

Batch
fetching

Metadata DB

 Reusable, composable, and shareable components

Data
Prep.

Model
Training

Model
Eval.

Pipeline
Deployment

Data
Analysis

Prediction
Service

experimentation/dev/test

staging/preprod/prod

ML Ops

Orchestrated Experiment

Data
Validation

Model
Valid.

Data
Prep.

Model
Training

Model
Eval.

Data
Validation

CD: Model
ServingModel

Valid.

Automated Pipeline

Trigger

Model
Analysis

Performance
Monitoring

Models
Registry

Source
repository

Source
code
Source
code
Source
code

Data
Extraction

Feature
Store

Real-time feature fetching

Offline
extract

Batch
fetching

Metadata DB

Continuous delivery of models

Trained
Model

Data
Prep.

Model
Training

Model
Eval.

Pipeline
Deployment

Data
Analysis

Prediction
Service

experimentation/dev/test

staging/preprod/prod

ML Ops

Orchestrated Experiment

Data
Validation

Model
Valid.

Data
Prep.

Model
Training

Model
Eval.

Data
Validation

CD: Model
ServingModel

Valid.

Automated Pipeline

Trigger

Model
Analysis

Performance
Monitoring

Models
Registry

Source
repository

Source
code
Source
code
Source
code

Data
Extraction

Feature
Store

Real-time feature fetching

Offline
extract

Batch
fetching

Metadata DB

Data validation

Trained
Model

Data
Prep.

Model
Training

Model
Eval.

Pipeline
Deployment

Data
Analysis

Prediction
Service

experimentation/dev/test

staging/preprod/prod

ML Ops

Orchestrated Experiment

Data
Validation

Model
Valid.

Data
Prep.

Model
Training

Model
Eval.

Data
Validation

CD: Model
ServingModel

Valid.

Automated Pipeline
Trigger

Model
Analysis

Performance
Monitoring

Models
Registry

Source
repository

Source
code
Source
code
Source
code

Data
Extraction

Feature
Store

Real-time feature fetching

Offline
extract

Batch
fetching

Metadata DB

Model validation

Trained
Model

Data
Prep.

Model
Training

Model
Eval.

Pipeline
Deployment

Data
Analysis

Prediction
Service

experimentation/dev/test

staging/preprod/prod

ML Ops

Orchestrated Experiment

Data
Validation

Model
Valid.

Data
Prep.

Model
Training

Model
Eval.

Data
Validation

CD: Model
ServingModel

Valid.

Automated Pipeline

Trigger

Model
Analysis

Performance
Monitoring

Models
Registry

Source
repository

Source
code
Source
code
Source
code

Data
Extraction

Feature
Store

Real-time feature fetching

Offline
extract

Batch
fetching

Metadata DB

Feature store

Trained
Model

Data
Prep.

Model
Training

Model
Eval.

Pipeline
Deployment

Data
Analysis

Prediction
Service

experimentation/dev/test

staging/preprod/prod

ML Ops

Orchestrated Experiment

Data
Validation

Model
Valid.

Data
Prep.

Model
Training

Model
Eval.

Data
Validation

CD: Model
ServingModel

Valid.

Automated Pipeline

Trigger

Model
Analysis

Performance
Monitoring

Models
Registry

Source
repository

Source
code
Source
code
Source
code

Data
Extraction

Feature
Store

Real-time feature fetching

Offline
extract

Batch
fetching

Metadata DB

Metadata store

Trained
Model

Data
Analysis

Prediction
Service

experimentation/dev/test

staging/preprod/prod

MLOps

Orchestrated Experiment

Data
Prep.

Model
Training

Model
Eval.

Data
Validation

CD: Model
ServingModel

Valid.

Automated Pipeline

Trigger

Model
Analysis

Models
Registry

Source
repository

Sourc
e code
Sourc
e code
Source
code

Data
Extraction

CD: Pipeline
Deployment

CI: Build, test, &
package pipeline

components

PackagesPackages
Packages

Performance
Monitoring

Feature
Store

Metadata DB

Trained
Model

MLOps level 2: CI/CD pipeline automation

Serving and
Monitoring

Continuous
Training

Experimentation/
Development

Code
Repository

Code and
configurations

Training
Pipeline CI/CD

Artifact
Repository

Pipeline
artifacts

Model
Registry

Model
Deployment

CI/CD

Serving
Infrastructure

Trained
model

Model
deployment

ML
Metadata

 Logs

Serving logs

Putting all together

MLOps Methodology

Developing components for
an orchestrated workflow

● Pre-built and standard components, and 3 styles of custom components

● Components can also be containerized

● Examples of things you can do with TFX components:

○ Data augmentation, upsampling, or downsampling

○ Anomaly detection based on confidence intervals or autoencoder

reproduction error

○ Interfacing with external systems like help desks for alerting and monitoring

○ … and more!

Orchestrate your ML workflows with TFX

Hello TFX

Component Specification

● The component's input and output contract

Executor Class

● Implementation of the component’s processing

Component Class

● Combines the specification with the executor to create a TFX component

Anatomy of a TFX Component

TFX components at runtime

Types of custom components

● Fully custom components combine the

specification with the executor

● Python function-based components use

a decorator and argument annotations

● Container-based components wrap the

component inside a Docker container

Publisher

Executor

Metadata Store

Driver

@component

def MyValidationComponent(

 model: InputArtifact[Model],

 blessing: OutputArtifact[Model],

 accuracy_threshold: Parameter[int] = 10,

) -> OutputDict(accuracy=float):

 '''My simple custom model validation component.'''

 accuracy = evaluate_model(model)

 if accuracy >= accuracy_threshold:

 write_output_blessing(blessing)

 return {

 'accuracy': accuracy

 }

Python function-based components

from tfx.dsl.component.experimental import container_component

from tfx.dsl.component.experimental import placeholders

from tfx.types import standard_artifacts

grep_component = container_component.create_container_component(

 name='FilterWithGrep',

 inputs={'text': standard_artifacts.ExternalArtifact},

 outputs={'filtered_text': standard_artifacts.ExternalArtifact},

 parameters={'pattern': str},

 ...

)

Container-based components

grep_component = container_component.create_container_component(

 ...

 image='google/cloud-sdk:278.0.0',

 command=[

 'sh', '-exc',

 '''

 ...

 ''',

 '--pattern', placeholders.InputValuePlaceholder('pattern'),

 '--text', placeholders.InputUriPlaceholder('text'),

 '--filtered-text',

placeholders.OutputUriPlaceholder('filtered_text'),

],

)

Container-based components

● Define custom component spec, executor class, and component class

● Component reusability

○ Reuse a component spec and implement a new executor that derives

from an existing component

Fully custom components

class HelloComponentSpec(types.ComponentSpec):

 INPUTS = {

 # This will be a dictionary with input artifacts, including URIs

 'input_data': ChannelParameter(type=standard_artifacts.Examples),

 }

 OUTPUTS = {

 # This will be a dictionary which this component will populate

 'output_data': ChannelParameter(type=standard_artifacts.Examples),

 }

Defining input and output specifications

 PARAMETERS = {

 # These are parameters that will be passed in the call to create an instance of this component

 'name': ExecutionParameter(type=Text),

 }

class Executor(base_executor.BaseExecutor):

 def Do(self, input_dict: Dict[Text, List[types.Artifact]],

 output_dict: Dict[Text, List[types.Artifact]],

 exec_properties: Dict[Text, Any]) -> None:

 ...

Implement the executor

class Executor(base_executor.BaseExecutor):

 ...

 split_to_instance = {}

 for artifact in input_dict['input_data']:

 for split in json.loads(artifact.split_names):

 uri = os.path.join(artifact.uri, split)

 split_to_instance[split] = uri

 for split, instance in split_to_instance.items():

 input_dir = instance

 output_dir = artifact_utils.get_split_uri(

 output_dict['output_data'], split)

 for filename in tf.io.gfile.listdir(input_dir):

 input_uri = os.path.join(input_dir, filename)

 output_uri = os.path.join(output_dir, filename)

 io_utils.copy_file(src=input_uri, dst=output_uri, overwrite=True)

Implement the executor

from tfx.types import standard_artifacts

from hello_component import executor

class HelloComponent(base_component.BaseComponent):

 SPEC_CLASS = HelloComponentSpec

 EXECUTOR_SPEC = ExecutorClassSpec(executor.Executor)

Make the component pipeline-compatible

class HelloComponent(base_component.BaseComponent):

 ...

 def __init__(self,

 input_data: types.Channel = None,

 output_data: types.Channel = None,

 name: Optional[Text] = None):

 if not output_data:

 examples_artifact = standard_artifacts.Examples()

 examples_artifact.split_names = input_data.get()[0].split_names

 output_data = channel_utils.as_channel([examples_artifact])

 spec = HelloComponentSpec(input_data=input_data, output_data=output_data, name=name)

 super(HelloComponent, self).__init__(spec=spec)

Define the constructor

Completing the component class

def _create_pipeline():
 ...
 example_gen = CsvExampleGen(input_base=examples)

 hello = component.HelloComponent(
 input_data=example_gen.outputs['examples'],

name='HelloWorld')

 statistics_gen = StatisticsGen(
examples=hello.outputs['output_data'])

 ...
 return pipeline.Pipeline(
 ...
 components=[example_gen, hello, statistics_gen, ...],
 ...
)

Assemble into a TFX pipeline

Model Management and
Deployment Infrastructure

Managing Model Versions

Why versioning ML Models?

Team 1

Team 2

Team 3

Version
Control

Server

Code

Data

Config

Model version x

How ML Models are versioned?

ML Models versioning

● No uniform standard accepted yet

● Different organizations have different meanings and conventions

How software is versioned?

Version: MAJOR.MINOR.PATCH

● MAJOR: Contains incompatible API changes

● MINOR: Adds functionality in a backwards compatible manner

● PATCH: Makes backwards compatible bug fixes

Version: MAJOR.MINOR.PIPELINE

● MAJOR: Incompatibility in data or target variable

● MINOR: Model performance is improved

● PIPELINE: Pipeline of model training is changed

A Model Versioning Proposal

● Can ML framework be leveraged to retrieve previously trained models?

● ML framework may internally be versioning models

Retrieving older models

● Artifacts: information needed to preprocess data and generate result

(code, data, config, model)

● ML orchestration frameworks may store operations and data artifacts to

recreate model

● Post training artifacts and operations are usually not part of lineage

What is model lineage?

Code

Data

Config

Model version x

● Central repository for storing trained ML models

● Provides various operations of ML model development lifecycle

● Promotes model discovery, model understanding, and model reuse

● Integrated into OSS and commercial ML platforms

What is a model registry?

Metadata

Model

Artifacts

Parameters

Staging Production Archived

Model RegistryTrained Model

● Model versions

● Model serialized artifacts

● Free text annotations and structured properties

● Links to other ML artifact and metadata stores

Metadata stored by model registry

Metadata

Model

Artifacts

Parameters

Staging Production Archived

Model RegistryTrained Model

● Model search/discovery and understanding

● Approval/Governance

● Collaboration/Discussion

● Streamlined deployments

● Continuous evaluation and monitoring

● Staging and promotions

Capabilities Enabled by Model Registries

● Azure ML Model Registry

● SAS Model Manager

● MLflow Model Registry

● Google AI Platform

● Algorithmia

Examples of Model Registries

Model Management and
Deployment Infrastructure

Continuous Delivery

Continuous
Integration

Triggered when new code is pushed or committed

Performs unit and integration tests for the

components

Build packages, container images, executables etc

Delivers the final packages to Continuous Delivery

pipeline

What is Continuous Integration (CI)

Continuous
Delivery

Deploys new code and trained models to the

target environment

Checks the prediction service performance of

the model before deploying

What is Continuous Delivery (CD)

Ensures compatibility of code and models with

the target environment

Feature
store

Data
analysis

Orchestrated
experiment

Source
code

Source
Repository

CI: Build, test, &
package pipeline

components
Packages

CD: Pipeline
Deployment

Model
analysis

CD: Model
serving

Prediction
service

Performance
monitoring

development/test

staging/pre-production/production

CI/CD Infrastructure

Unit testing in CI

Unit testing Data
Unit testing Model

performance

● Testing that each component in the pipeline produces the expected artifacts.

Unit Testing in CI

Test valuesTest feature engineering logic

Test format

Input data

Unit Testing Input Data

Test model methods

Model

Test the model performance

metrics

Test to avoid inherent bias
Test to avoid NaN values,

empty strings

Unit Testing Model Performance

Mocks of datasets

are especially
important for ML.
They should cover

edge and corner
cases.

Mocking

Your mocks should

sparsely cover the
same space as your
data, but with a
much smaller
dataset.

Data Coverage

ML Unit Testing Considerations

Use code coverage

libraries to make
sure that you are not
missing unit tests for
any part of our code.

Code Coverage

TFX InfraValidator

● TFX InfraValidator takes the model, launches a sand-boxed model server with the model,
and sees if it can be successfully loaded and optionally queried

● InfraValidator is using the same model server binary, same resources, and same server
configuration as production

Infrastructure validation
When to apply infrastructure validation

● Before starting CI/CD as part of model training

● Can also occur as part of CI/CD as a last check to verify that the model is deployable to
the serving infrastructure

Model Management and
Deployment Infrastructure

Progressive Delivery

Initial Stage

Deliver changes first to
small, low risk audiences

Later Stage

Expand to larger riskier
audience

Progressive Delivery is essentially an improvement over Continuous Delivery

● Decrease deployment risk

● Faster deployment

● Gradual rollout and

ownership

Progressive Delivery

● You can deploy multiple models performing same task

● Deploying competing models, as in A/B testing

● Deploying as shadow models, as in Canary testing

Complex Model Deployment Scenarios

● No downtime

● Quick rollback & reliable

● Smoke testing in production

environment

The diagrams are illustrations based on:
https://dev.to/mostlyjason/intro-to-deployment-strategies-blue-green-canary-and-more-3a3#

Blue/Green deployment

User Traffic

Code Version 1 (Blue) Code Version 2 (Green)

Load Balancer

https://dev.to/mostlyjason/intro-to-deployment-strategies-blue-green-canary-and-more-3a3#

Canary deployment
User Traffic

Load Balancer

Version 1
Version 2

Canary deployment
User Traffic

Load Balancer

Version 1
Version 2

Canary deployment
User Traffic

Load Balancer

Version 1
Version 2

Canary deployment
User Traffic

Load Balancer

Version 1
Version 2

Live Experimentation

● Model metrics are usually not exact matches

for business objectives

● Example: Recommender systems

○ Model trained on clicks

○ Business wants to maximize profit

○ Example: Different products have different

profit margins

● Users are divided into two groups

● Users are randomly routed to different

models in environment

● You gather business results from each

model to see which one is performing

better

Live Experimentation: A/B Testing

Client

Application

Model A Model B

Live Experimentation: A/B Testing

The system randomly
assigns people into

two groups Relationship between the treatment received
and the observed difference are analysed to

validate the hypothesis

Large use data is fed
to the system

A

B

Live Experimentation: Multi-Armed Bandit (MAB)

● Uses ML to learn from test results during test

● Dynamically routes requests to winning

models

● Eventually all requests are routed to one

model

● Minimizes use of low-performing models

Live Experimentation: Contextual Bandit

● Similar to

multi-armed bandit,

but also considers

context of request

● Example: Users in

different climates

