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Model Serving Architecture

Model Serving: Patterns 
and Infrastructure
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○ Amazon Web Services, Google Cloud Platform, 
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TorchServe

Model Servers



Out of the box integration with TensorFlow Models
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endpoints
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● Simplifies deployment of AI models at scale in production.

● Open source inference serving software

● Deploy trained models from any framework:

○ TensorFlow, TensorRT, PyTorch, ONNX Runtime, or a custom 
framework

● Models can be stored on:

○ Local storage, AWS S3, GCP, Any CPU-GPU Architecture (cloud, 
data centre or edge)

HTTP REST or gRPC endpoints are supported.

NVIDIA Triton Inference Server



Triton Inference Server Architecture supports:

● Single GPU for multiple models from same 

or different frameworks

● Multi-GPU for same model

○ Can run  instances of model on 

multiple GPUs for increased 

inference performance.

Supports model ensembles.

Client Application

Python/C++ Client Library

HTTP gRPC

Inference 
Request

Inference 
Response

Pre model 
scheduler 

queues

Framework 
Backends

Scheduler

C API
Model ManagementClient app 

can directly 
link to C API

Status health report export HTTP

Model 
Repository

Custom

GPU GPU GPU GPU CPU

Architecture



Can integrate with KubeFlow pipelines for end to end AI workflow 

Triton Inference Server

Triton Inference Server

Triton Inference Server

Triton Inference Server

Load balancer
(optional)

Front End Client 
Applications

Front End Client 
Applications

AI Model 
Repository

Data Center | Cloud | Edge
AI Inference Cluster

CPU | GPU

Designed for Scalability



● Model serving framework for PyTorch models.

● Initiative from AWS and Facebook

Batch and Real-time 
Inference

Supports REST Endpoints
Default handlers for Image 

Classification, Object Detection, 
Image Segmentation, Text 

Classification 

Multi-Model Serving Monitor Detail Logs and 
Customized Metrics A/B Testing 

TorchServe

Torch Serve
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KFServing

pre-process predict post-process explain

KFServing

Kubernetes

Istio

Knative

Compute Cluster, CPU GPU, TPU

● Enables serverless inferencing on 
Kubernetes.

● Provides high abstraction 
interfaces for common ML 
frameworks like TensorFlow, 
PyTorch, scikit-learn etc.

KF Serving



Scaling Infrastructure

Model Serving: Patterns and 
Infrastructure
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Server

Why is Scaling Important?





+ Increased Power

+ Upgrading

+ More RAM

+ Faster Storage

+ Adding or upgrading GPU/TPU





+ More CPUs/GPUs instead of bigger ones

+ Scale up as needed

+ Scale back down to minimums



• Shrink or grow no of nodes based on load, 
throughput, latency requirements.

Benefit of elasticity

• No need for taking existing servers offline 
for scalingApplication never goes offline

• Add more nodes any time at increased costNo limit on hardware capacity

Why Horizontal Over Vertical Scaling
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Hardware

Operating System

App App App

Bin/ Library

Typical System Architecture 
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Virtual MachineVirtual Machine

Operating System

App App App

Bin/ Library

Operating System

App App App

Bin/ Library

Hardware

Operating System

Hypervisor

Hardware

Operating System

Container Runtime

App App App

Bin/Library Bin/Library Bin/Library

Container Container Container

Building Containers



Containers Advantages
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Hardware

Operating System

Container Runtime

App App App

Bin/Library Bin/Library Bin/Library

Container Container Container

● Less OS requirements - more apps!

● Abstraction

● Easy deployment based on container 

runtime

Containers Advantages



Hardware

Operating System

Docker

App App App

Bin/Library Bin/Library Bin/Library

Container Container Container

● Open source container technology

● Most popular container runtime 

● Started as container technology for Linux

● Available for Windows applications as well.

● Can be used in data centres, personal 
machines or public cloud. 

● Docker partners with major cloud services 
for containerization.

Docker: Container Runtime



● Manages life cycle of containers in 

production environments

● Manages scaling of containers

● Ensures reliability of containers

● Distributes resources between 
containers.

● Monitors health of containersMachine Infrastructure

Machine & OS Machine & OS Machine & OS

Container 
Runtime

Container 
Runtime
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Scheduling

Service Management

Apps & Services

Container 
Runtime

O
rc

h
es

tr
at

io
n

Enter Container Orchestration



● Manages life cycle of containers in 

production environments

● Manages scaling of containers

● Ensures reliability of containers

● Distributes resources between 
containers.

● Monitors health of containersMachine Infrastructure

Machine & OS Machine & OS Machine & OS

Container 
Runtime

Container 
Runtime

Resource Management

Scheduling

Service Management

Apps & Services

Container 
Runtime

O
rc

h
es

tr
at

io
n

Enter Container Orchestration



Kubernetes Docker Swarm

Popular Container Orchestration Tools



Kubernetes



● Dedicated to making deployments of machine 

learning (ML) workflows on Kubernetes simple, 
portable and scalable.

● Anywhere you are running Kubernetes, you should be 

able to run Kubeflow.

● Can be run on premise or on Kubernetes engine on cloud 

offerings AWS, GCP, Azure etc.,

ML Workflows on Kubernetes - KubeFlow



Online Inference

Model Serving: Patterns 
and Infrastructure



Observation

Prediction

REST API Model

● Process of generating machine 
learning predictions in real time 
upon request.

● Predictions are generated on a single 
observation of data at runtime.

● Can be generated at any time of the 
day on demand

Online Inference
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Inference Optimization



Infrastructur
e

Inference Optimization: Infrastructure



Model Architecture

Inference Optimization: Model Architecture



Model Compilation

Inference Optimization: Model Compilation
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Popular 
Products Data Store

Observation

Prediction

REST API Model

Additional Optimizations



These resources are expensive

Carefully choose caching requirements based on your needs.

Single digit milliseconds 

read latency, in memory 

cache available

In memory cache,

Sub milliseconds read 

latency
Scaleable, handles 

dynamically changing 

data, Milliseconds 

read latency

Scaleable, can handle 

slowly changing data,

Milliseconds read 

latency

NoSQL Databases Caching and Feature Lookup



Data Preprocessing

Model Serving: Patterns 
and Infrastructure
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Data Cleansing

● Correcting invalid 
values in incoming data

Feature Tuning

● Normalization

● Clipping outliers

● Imputing Missing Values

Feature Construction

● Combine inputs

● Feature crossing

● Polynomial expansion

Representation Transformation Feature Selection

● Apply same feature selection 
done during training on incoming 
data and features fetched from 
cache

● Change data format for the model

● One-hot encoding

● Vectorization

Preprocessing Operations Needed Before Inference
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Batch Inference

Model Serving: Patterns and 
Infrastructure
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Generating predictions on batch of a 
observations

Batch jobs are often generated on 
some recurring schedule

Predictions are stored and made 
available to developers or end 
users

Batch Inference



Advantages of Batch Inference

Reduced cost of ML 
system

● Longer data retrieval
● Not a problem as predictions 

are not in real time

 Complex machine 
learning models for 
improved accuracy

X
 Caching not

required



Limitations of Batch Inference

Recommendations from same 
geolocation

Recommendations from 
same age bracket

Long Update Latency Predictions based on
older data



Important Metrics to Optimize

Most important metric to optimize while performing batch predictions:

Throughput

● Prediction service should be able to handle large volumes of inferences at a time.

● Predictions need not be available immediately.

● Latency can be compromised.

Limitations of Batch Inference



How to Increase Throughput?

● Use hardware accelerators like GPU’s, TPU’s.

● Increase number of servers/workers

○ Load several instances of model on multiple workers to increase throughput 

Limitations of Batch Inference



● E-commerce sites: new recommendations 

on a recurring schedule

● Cache these for easy retrieval 

● Enables use of more predictors to train 

more complex models.

○ Helps personalization to a greater 

degree, but with delayed data

Recommend

Purchased by user

Si
m

ila
r 

It
em

s

Use Case - Product Recommendations



● User sentiment based on customer reviews

● No need for realtime prediction for this 

problem

● CNN, RNN, or LSTM all work for this 

problem

● These models are more complex, but more 

accurate for the problem

● More cost effective to use them with batch 

prediction

My experience 
so far has been 

fantastic

POSITIVE

The product is ok 
I guess

NEUTRAL

Your support 
team

 is pathetic 

NEGATIVE

Use Case - Sentiment Analysis



● Estimate the demand for products for 

inventory and ordering optimization

● Predict future based on historical data (time 

series)

● Many models available as this is a batch 

predictions problem

Use Case - Demand Forecasting



Batch Inference

Using ML Models with 
Distributed Batch and 

Stream Processing Systems



● Data can be of different types based on the source.

● Batch Data

○ Batch processing can be done on data available in huge volumes in data lakes, 

from csv files, log files etc.,

● Streaming Data

○ Real-time streaming data, like data from sensors.

Data Processing - Batch and Streaming



● Before data is used for making batch predictions:

○ It has to be extracted from multiple sources like log files, streaming 

sources, APIs, apps etc.,

○ Transformed

○ Loaded into a database for prediction

This is done using ETL Pipelines

ETL on Data



● Set of processes for

○ extracting data from data sources

○ Transforming data

○ Loading into an output destination like data warehouse

● From there data can be consumed for training or making predictions using ML models, 

Transformation 
Engine

Batch Prediction Job on 
Prepared Data

Data Sources Extract Transform Load Target

ETL Pipelines



Cluster 
Manager

Data Sources
Extract

Load

Target

Worker

Worker

Worker

● ETL can be performed huge volumes of data in distributed manner.

● Data is split into chunks and parallely processed by multiple workers.

● The results of the ETL workflow are stored in a database.

● Results in lower latency and higher throughput of data processing.

Distributed Processing 



Transformation 
Engine

Batch 
Prediction Job 

on Prepared 
Data

Data Sources

● CSV Files

● XML

● JSON

● APIs

● Data Lake (like 

cloud storage)

Cloud DataFlow

Transform
Load

Target

● Data Warehouse

Eg: BigQuery

● Data Mart

● Data Lake

Eg: Cloud Storage

+

ETL Pipeline components Batch Processing



Transformation 
Engine

Consumed for 
ML pipeline 

training/ 
prediction

Streaming Data Sources Transform
Load

Target

● Streaming data for 

another pipeline

● Data Warehouse

Eg: BigQuery

● Data Mart

● Data Lake

Eg: Cloud Storage

Streaming

Pub Sub Cloud DataFlow

+

ETL Pipeline Components Stream Processing


