
Copyright Notice
These slides are distributed under the Creative Commons License.

DeepLearning.AI makes these slides available for educational purposes. You may not use or
distribute these slides for commercial purposes. You may make copies of these slides and
use or distribute them for educational purposes as long as you cite DeepLearning.AI as the
source of the slides.

For the rest of the details of the license, see
https://creativecommons.org/licenses/by-sa/2.0/legalcode

http://deeplearning.ai/
http://deeplearning.ai/
https://creativecommons.org/licenses/by-sa/2.0/legalcode

Model Serving Architecture

Model Serving: Patterns
and Infrastructure

● Train and deploy on your own hardware
infrastructure

● Manually procure hardware GPUs, CPUs etc

● Profitable for large companies running ML projects
for longer time

● Train and deploy on cloud choosing from several
service providers

○ Amazon Web Services, Google Cloud Platform,
Microsoft Azure, etc

On Prem

On Cloud

ML Infrastructure

ML Infrastructure
● Train and deploy on your own hardware

infrastructure

● Manually procure hardware GPUs, CPUs etc

● Profitable for large companies running ML projects
for longer time

● Train and deploy on cloud choosing from several
service providers

○ Amazon Web Services, Google Cloud Platform,
Microsoft Azure, etc

On Prem

On Cloud

ML Infrastructure
● Train and deploy on your own hardware

infrastructure

● Manually procure hardware GPUs, CPUs etc

● Profitable for large companies running ML projects
for longer time

● Train and deploy on cloud choosing from several
service providers

○ Amazon Web Services, Google Cloud Platform,
Microsoft Azure, etc

On Prem

On Cloud

● Can use open source, pre-built servers

○ TF-Serving, KF-Serving, NVidia and more...

● Create VMs and use open source pre-built servers

● Use the provided ML workflow

On Prem

On Cloud

Model Serving

● Can use open source, pre-built servers

○ TF-Serving, KF-Serving, NVidia and more...

● Create VMs and use open source pre-built servers

● Use the provided ML workflow

On Prem

On Cloud

Model Serving

● Can use open source, pre-built servers

○ TF-Serving, KF-Serving, NVidia and more...

● Create VMs and use open source pre-built servers

● Use the provided ML workflow

On Prem

On Cloud

Model Serving

● Simplify the task of deploying machine learning models at scale.

● Can handle scaling, performance, some model lifecycle management etc.,

REST / gRPCModel Server

What’s in
this image?

Dog 0.99

Model File

Model Servers

● Simplify the task of deploying machine learning models at scale.

● Can handle scaling, performance, some model lifecycle management etc.,

Model Servers

REST / gRPCModel Server

What’s in
this image?

Dog 0.99

Model File

● Simplify the task of deploying machine learning models at scale.

● Can handle scaling, performance, some model lifecycle management etc.,

Model Servers

REST / gRPCModel Server

What’s in
this image?

Dog 0.99

Model File

● Simplify the task of deploying machine learning models at scale.

● Can handle scaling, performance, some model lifecycle management etc.,

Model Servers

REST / gRPCModel Server

What’s in
this image?

Dog 0.99

Model File

TensorFlow Serving

KF Serving

TorchServe

Model Servers

Out of the box integration with TensorFlow Models

Batch and Real-time
Inference

Multi-Model Serving Exposes gRPC and REST
endpoints

Supports many servables

Non TF ModelsTF Models Word Embeddings Vocabularies
Feature

Transformations

TensorFlow Serving

Out of the box integration with TensorFlow Models

Supports many servables

Non TF ModelsTF Models Word Embeddings Vocabularies
Feature

Transformations

TensorFlow Serving

Batch and Real-time
Inference

Multi-Model Serving Exposes gRPC and REST
endpoints

TensorFlow Serving

Out of the box integration with TensorFlow Models

Supports many servables

Non TF ModelsTF Models Word Embeddings Vocabularies
Feature

Transformations

Batch and Real-time
Inference

Multi-Model Serving Exposes gRPC and REST
endpoints

Batch and Real-time
Inference

Multi-Model Serving Exposes gRPC and REST
endpoints

TensorFlow Serving

Out of the box integration with TensorFlow Models

Supports many servables

Non TF ModelsTF Models Word Embeddings Vocabularies
Feature

Transformations

TensorFlow Serving Architecture

CORE

CLIENT ServableHandle DynamicManager

VersionPolicy

TF
Servable

FILE
SYSTEM

Source

Loader
ASPIRED

VERSIONS

Legend:

Blue: Caller-specific code
Green: TF Serving core classes / APIs
Yellow: Pluggable implementations

TensorFlow Serving Architecture

CORE

CLIENT ServableHandle DynamicManager

VersionPolicy

TF
Servable

FILE
SYSTEM

Source

Loader
ASPIRED

VERSIONS

Legend:

Blue: Caller-specific code
Green: TF Serving core classes / APIs
Yellow: Pluggable implementations

TensorFlow Serving Architecture

CORE

CLIENT ServableHandle DynamicManager

VersionPolicy

TF
Servable

FILE
SYSTEM

Source

Loader
ASPIRED

VERSIONS

Legend:

Blue: Caller-specific code
Green: TF Serving core classes / APIs
Yellow: Pluggable implementations

TensorFlow Serving Architecture

CORE

CLIENT ServableHandle DynamicManager

VersionPolicy

TF
Servable

FILE
SYSTEM

Source

Loader
ASPIRED

VERSIONS

Legend:

Blue: Caller-specific code
Green: TF Serving core classes / APIs
Yellow: Pluggable implementations

TensorFlow Serving Architecture

CORE

CLIENT ServableHandle DynamicManager

VersionPolicy

TF
Servable

FILE
SYSTEM

Source

Loader
ASPIRED

VERSIONS

Legend:

Blue: Caller-specific code
Green: TF Serving core classes / APIs
Yellow: Pluggable implementations

TensorFlow Serving Architecture

CORE

CLIENT ServableHandle DynamicManager

VersionPolicy

TF
Servable

FILE
SYSTEM

Source

Loader
ASPIRED

VERSIONS

Legend:

Blue: Caller-specific code
Green: TF Serving core classes / APIs
Yellow: Pluggable implementations

TensorFlow Serving Architecture

CORE

CLIENT ServableHandle DynamicManager

VersionPolicy

TF
Servable

FILE
SYSTEM

Source

Loader
ASPIRED

VERSIONS

Legend:

Blue: Caller-specific code
Green: TF Serving core classes / APIs
Yellow: Pluggable implementations

TensorFlow Serving Architecture

CORE

CLIENT ServableHandle DynamicManager

VersionPolicy

TF
Servable

FILE
SYSTEM

Source

Loader
ASPIRED

VERSIONS

Legend:

Blue: Caller-specific code
Green: TF Serving core classes / APIs
Yellow: Pluggable implementations

TensorFlow Serving Architecture

CORE

CLIENT ServableHandle DynamicManager

VersionPolicy

TF
Servable

FILE
SYSTEM

Source

Loader
ASPIRED

VERSIONS

Legend:

Blue: Caller-specific code
Green: TF Serving core classes / APIs
Yellow: Pluggable implementations

TensorFlow Serving Architecture

CORE

CLIENT ServableHandle DynamicManager

VersionPolicy

TF
Servable

FILE
SYSTEM

Source

Loader
ASPIRED

VERSIONS

Legend:

Blue: Caller-specific code
Green: TF Serving core classes / APIs
Yellow: Pluggable implementations

TensorFlow Serving Architecture

CORE

CLIENT ServableHandle DynamicManager

VersionPolicy

TF
Servable

FILE
SYSTEM

Source

Loader
ASPIRED

VERSIONS

Legend:

Blue: Caller-specific code
Green: TF Serving core classes / APIs
Yellow: Pluggable implementations

TensorFlow Serving Architecture

CORE

CLIENT ServableHandle DynamicManager

VersionPolicy

TF
Servable

FILE
SYSTEM

Source

Loader
ASPIRED

VERSIONS

Legend:

Blue: Caller-specific code
Green: TF Serving core classes / APIs
Yellow: Pluggable implementations

● Simplifies deployment of AI models at scale in production.

● Open source inference serving software

● Deploy trained models from any framework:

○ TensorFlow, TensorRT, PyTorch, ONNX Runtime, or a custom
framework

● Models can be stored on:

○ Local storage, AWS S3, GCP, Any CPU-GPU Architecture (cloud,
data centre or edge)

HTTP REST or gRPC endpoints are supported.

NVIDIA Triton Inference Server

Triton Inference Server Architecture supports:

● Single GPU for multiple models from same

or different frameworks

● Multi-GPU for same model

○ Can run instances of model on

multiple GPUs for increased

inference performance.

Supports model ensembles.

Client Application

Python/C++ Client Library

HTTP gRPC

Inference
Request

Inference
Response

Pre model
scheduler

queues

Framework
Backends

Scheduler

C API
Model ManagementClient app

can directly
link to C API

Status health report export HTTP

Model
Repository

Custom

GPU GPU GPU GPU CPU

Architecture

Can integrate with KubeFlow pipelines for end to end AI workflow

Triton Inference Server

Triton Inference Server

Triton Inference Server

Triton Inference Server

Load balancer
(optional)

Front End Client
Applications

Front End Client
Applications

AI Model
Repository

Data Center | Cloud | Edge
AI Inference Cluster

CPU | GPU

Designed for Scalability

● Model serving framework for PyTorch models.

● Initiative from AWS and Facebook

Batch and Real-time
Inference

Supports REST Endpoints
Default handlers for Image

Classification, Object Detection,
Image Segmentation, Text

Classification

Multi-Model Serving Monitor Detail Logs and
Customized Metrics A/B Testing

TorchServe

Torch Serve

TorchServe Architecture

TorchServe Architecture

TorchServe Architecture

TorchServe Architecture

TorchServe Architecture

KFServing

pre-process predict post-process explain

KFServing

Kubernetes

Istio

Knative

Compute Cluster, CPU GPU, TPU

● Enables serverless inferencing on
Kubernetes.

● Provides high abstraction
interfaces for common ML
frameworks like TensorFlow,
PyTorch, scikit-learn etc.

KF Serving

Scaling Infrastructure

Model Serving: Patterns and
Infrastructure

Why is Scaling Important?

Why is Scaling Important?

Why is Scaling Important?

Server

Why is Scaling Important?

+ Increased Power

+ Upgrading

+ More RAM

+ Faster Storage

+ Adding or upgrading GPU/TPU

+ More CPUs/GPUs instead of bigger ones

+ Scale up as needed

+ Scale back down to minimums

• Shrink or grow no of nodes based on load,
throughput, latency requirements.

Benefit of elasticity

• No need for taking existing servers offline
for scalingApplication never goes offline

• Add more nodes any time at increased costNo limit on hardware capacity

Why Horizontal Over Vertical Scaling

• Shrink or grow no of nodes based on load,
throughput, latency requirements.

Benefit of elasticity

• No need for taking existing servers offline
for scalingApplication never goes offline

• Add more nodes any time at increased costNo limit on hardware capacity

Why Horizontal Over Vertical Scaling

• Shrink or grow no of nodes based on load,
throughput, latency requirements.

Benefit of elasticity

• No need for taking existing servers offline
for scalingApplication never goes offline

• Add more nodes any time at increased costNo limit on hardware capacity

Why Horizontal Over Vertical Scaling

• Shrink or grow no of nodes based on load,
throughput, latency requirements.

Benefit of elasticity

• No need for taking existing servers offline
for scalingApplication never goes offline

• Add more nodes any time at increased costNo limit on hardware capacity

Why Horizontal Over Vertical Scaling

Hardware

Operating System

App App App

Bin/ Library

Typical System Architecture

Virtual MachineVirtual Machine

Hardware

Operating System

App App App

Bin/ Library

Operating System

App App App

Bin/ Library

Operating System

App App App

Bin/ Library

Hardware

Operating System

Hypervisor

Virtual Machine (VM) Architecture

Virtual MachineVirtual Machine

Hardware

Operating System

App App App

Bin/ Library

Operating System

App App App

Bin/ Library

Operating System

App App App

Bin/ Library

Hardware

Operating System

Hypervisor

VM Management

Virtual MachineVirtual Machine

Hardware

Operating System

App App App

Bin/ Library

Operating System

App App App

Bin/ Library

Operating System

App App App

Bin/ Library

Hardware

Operating System

Hypervisor

Hypervisor and Scaling

Virtual MachineVirtual Machine

Hardware

Operating System

App App App

Bin/ Library

Operating System

App App App

Bin/ Library

Operating System

App App App

Bin/ Library

Hardware

Operating System

Hypervisor

VM Limitations

Virtual MachineVirtual Machine

Operating System

App App App

Bin/ Library

Operating System

App App App

Bin/ Library

Hardware

Operating System

Hypervisor

Hardware

Operating System

Container Runtime

App App App

Bin/Library Bin/Library Bin/Library

Container Container Container

Building Containers

Containers Advantages

Virtual MachineVirtual Machine

Operating System

App App App

Bin/ Library

Operating System

App App App

Bin/ Library

Hardware

Operating System

Hypervisor

Hardware

Operating System

Container Runtime

App App App

Bin/Library Bin/Library Bin/Library

Container Container Container

Hardware

Operating System

Container Runtime

App App App

Bin/Library Bin/Library Bin/Library

Container Container Container

● Less OS requirements - more apps!

● Abstraction

● Easy deployment based on container

runtime

Containers Advantages

Hardware

Operating System

Docker

App App App

Bin/Library Bin/Library Bin/Library

Container Container Container

● Open source container technology

● Most popular container runtime

● Started as container technology for Linux

● Available for Windows applications as well.

● Can be used in data centres, personal
machines or public cloud.

● Docker partners with major cloud services
for containerization.

Docker: Container Runtime

● Manages life cycle of containers in

production environments

● Manages scaling of containers

● Ensures reliability of containers

● Distributes resources between
containers.

● Monitors health of containersMachine Infrastructure

Machine & OS Machine & OS Machine & OS

Container
Runtime

Container
Runtime

Resource Management

Scheduling

Service Management

Apps & Services

Container
Runtime

O
rc

h
es

tr
at

io
n

Enter Container Orchestration

● Manages life cycle of containers in

production environments

● Manages scaling of containers

● Ensures reliability of containers

● Distributes resources between
containers.

● Monitors health of containersMachine Infrastructure

Machine & OS Machine & OS Machine & OS

Container
Runtime

Container
Runtime

Resource Management

Scheduling

Service Management

Apps & Services

Container
Runtime

O
rc

h
es

tr
at

io
n

Enter Container Orchestration

Kubernetes Docker Swarm

Popular Container Orchestration Tools

Kubernetes

● Dedicated to making deployments of machine

learning (ML) workflows on Kubernetes simple,
portable and scalable.

● Anywhere you are running Kubernetes, you should be

able to run Kubeflow.

● Can be run on premise or on Kubernetes engine on cloud

offerings AWS, GCP, Azure etc.,

ML Workflows on Kubernetes - KubeFlow

Online Inference

Model Serving: Patterns
and Infrastructure

Observation

Prediction

REST API Model

● Process of generating machine
learning predictions in real time
upon request.

● Predictions are generated on a single
observation of data at runtime.

● Can be generated at any time of the
day on demand

Online Inference

Observation

Prediction

REST API Model

● Process of generating machine
learning predictions in real time
upon request.

● Predictions are generated on a single
observation of data at runtime.

● Can be generated at any time of the
day on demand

Online Inference

Observation

Prediction

REST API Model

● Process of generating machine
learning predictions in real time
upon request.

● Predictions are generated on a single
observation of data at runtime.

● Can be generated at any time of the
day on demand

Online Inference

Observation

Prediction

REST API Model

● Process of generating machine
learning predictions in real time
upon request.

● Predictions are generated on a single
observation of data at runtime.

● Can be generated at any time of the
day on demand

Online Inference

Latency

ThroughputCost

Metrics to
Optimize

Optimising ML Inference

Latency

ThroughputCost

Metrics to
Optimize

Observation

Prediction

REST API Model

Optimising ML Inference

Latency

ThroughputCost

Metrics to
Optimize

Observation

Prediction

REST API Model

Optimising ML Inference

Latency

ThroughputCost

Metrics to
Optimize

Observation

Prediction

REST API Model

Optimising ML Inference

Inference Optimization

Infrastructur
e

Inference Optimization: Infrastructure

Model Architecture

Inference Optimization: Model Architecture

Model Compilation

Inference Optimization: Model Compilation

Data Store

Observation

Prediction

REST API Model

Additional Optimizations

Data Store

Additional Optimizations

Observation

Prediction

REST API Model

Data Store

Observation

Prediction

REST API Model

Additional Optimizations

Data Store

Observation

Prediction

REST API Model

Additional Optimizations

Data Store

Observation

Prediction

REST API Model

Additional Optimizations

Popular
Products Data Store

Observation

Prediction

REST API Model

Additional Optimizations

These resources are expensive

Carefully choose caching requirements based on your needs.

Single digit milliseconds

read latency, in memory

cache available

In memory cache,

Sub milliseconds read

latency
Scaleable, handles

dynamically changing

data, Milliseconds

read latency

Scaleable, can handle

slowly changing data,

Milliseconds read

latency

NoSQL Databases Caching and Feature Lookup

Data Preprocessing

Model Serving: Patterns
and Infrastructure

Observation

Prediction

REST API Model

Data Preprocessing and Inference

Observation

Prediction

REST API Model

Data Preprocessing and Inference

Observation

Prediction

REST API Model

Data Preprocessing and Inference

Data Cleansing

● Correcting invalid
values in incoming data

Feature Tuning

● Normalization

● Clipping outliers

● Imputing Missing Values

Feature Construction

● Combine inputs

● Feature crossing

● Polynomial expansion

Representation Transformation Feature Selection

● Apply same feature selection
done during training on incoming
data and features fetched from
cache

● Change data format for the model

● One-hot encoding

● Vectorization

Preprocessing Operations Needed Before Inference

Data Cleansing

● Correcting invalid
values in incoming data

Feature Tuning

● Normalization

● Clipping outliers

● Imputing Missing Values

Feature Construction

Representation Transformation Feature Selection

● Apply same feature selection
done during training on incoming
data and features fetched from
cache

● Combine inputs

● Feature crossing

● Polynomial expansion

● Change data format for the model

● One-hot encoding

● Vectorization

Preprocessing Operations Needed Before Inference

Data Cleansing

● Correcting invalid
values in incoming data

Feature Tuning

● Normalization

● Clipping outliers

● Imputing Missing Values

Feature Construction

Representation Transformation Feature Selection

● Apply same feature selection
done during training on incoming
data and features fetched from
cache

● Combine inputs

● Feature crossing

● Polynomial expansion

● Change data format for the model

● One-hot encoding

● Vectorization

Preprocessing Operations Needed Before Inference

Data Cleansing

● Correcting invalid
values in incoming data

Feature Tuning

● Normalization

● Clipping outliers

● Imputing Missing Values

Feature Construction

Representation Transformation Feature Selection

● Apply same feature selection
done during training on incoming
data and features fetched from
cache

● Combine inputs

● Feature crossing

● Polynomial expansion

● Change data format for the model

● One-hot encoding

● Vectorization

Preprocessing Operations Needed Before Inference

Data Cleansing

● Correcting invalid
values in incoming data

Feature Tuning

● Normalization

● Clipping outliers

● Imputing Missing Values

Feature Construction

Feature Selection

● Apply same feature selection
done during training on incoming
data and features fetched from
cache

● Combine inputs

● Feature crossing

● Polynomial expansion

Preprocessing Operations Needed Before Inference

Representation Transformation

● Change data format for the model

● One-hot encoding

● Vectorization

Data Cleansing

● Correcting invalid
values in incoming data

Feature Tuning

● Normalization

● Clipping outliers

● Imputing Missing Values

Feature Construction

Feature Selection

● Apply same feature selection
done during training on incoming
data and features fetched from
cache

● Combine inputs

● Feature crossing

● Polynomial expansion

Preprocessing Operations Needed Before Inference

Representation Transformation

● Change data format for the model

● One-hot encoding

● Vectorization

Observation

Prediction

REST API Model

Processing After Obtaining Predictions

Observation

Prediction

REST API Model

Processing After Obtaining Predictions

Batch Inference

Model Serving: Patterns and
Infrastructure

X
1

X
2

...X
3

X
N

y
1

y
2

...y
3

y
N

Generating predictions on batch of a
observations

Batch jobs are often generated on
some recurring schedule

Predictions are stored and made
available to developers or end
users

Batch Inference

Advantages of Batch Inference

Reduced cost of ML
system

● Longer data retrieval
● Not a problem as predictions

are not in real time

 Complex machine
learning models for
improved accuracy

X
 Caching not

required

Limitations of Batch Inference

Recommendations from same
geolocation

Recommendations from
same age bracket

Long Update Latency Predictions based on
older data

Important Metrics to Optimize

Most important metric to optimize while performing batch predictions:

Throughput

● Prediction service should be able to handle large volumes of inferences at a time.

● Predictions need not be available immediately.

● Latency can be compromised.

Limitations of Batch Inference

How to Increase Throughput?

● Use hardware accelerators like GPU’s, TPU’s.

● Increase number of servers/workers

○ Load several instances of model on multiple workers to increase throughput

Limitations of Batch Inference

● E-commerce sites: new recommendations

on a recurring schedule

● Cache these for easy retrieval

● Enables use of more predictors to train

more complex models.

○ Helps personalization to a greater

degree, but with delayed data

Recommend

Purchased by user

Si
m

ila
r

It
em

s

Use Case - Product Recommendations

● User sentiment based on customer reviews

● No need for realtime prediction for this

problem

● CNN, RNN, or LSTM all work for this

problem

● These models are more complex, but more

accurate for the problem

● More cost effective to use them with batch

prediction

My experience
so far has been

fantastic

POSITIVE

The product is ok
I guess

NEUTRAL

Your support
team

 is pathetic

NEGATIVE

Use Case - Sentiment Analysis

● Estimate the demand for products for

inventory and ordering optimization

● Predict future based on historical data (time

series)

● Many models available as this is a batch

predictions problem

Use Case - Demand Forecasting

Batch Inference

Using ML Models with
Distributed Batch and

Stream Processing Systems

● Data can be of different types based on the source.

● Batch Data

○ Batch processing can be done on data available in huge volumes in data lakes,

from csv files, log files etc.,

● Streaming Data

○ Real-time streaming data, like data from sensors.

Data Processing - Batch and Streaming

● Before data is used for making batch predictions:

○ It has to be extracted from multiple sources like log files, streaming

sources, APIs, apps etc.,

○ Transformed

○ Loaded into a database for prediction

This is done using ETL Pipelines

ETL on Data

● Set of processes for

○ extracting data from data sources

○ Transforming data

○ Loading into an output destination like data warehouse

● From there data can be consumed for training or making predictions using ML models,

Transformation
Engine

Batch Prediction Job on
Prepared Data

Data Sources Extract Transform Load Target

ETL Pipelines

Cluster
Manager

Data Sources
Extract

Load

Target

Worker

Worker

Worker

● ETL can be performed huge volumes of data in distributed manner.

● Data is split into chunks and parallely processed by multiple workers.

● The results of the ETL workflow are stored in a database.

● Results in lower latency and higher throughput of data processing.

Distributed Processing

Transformation
Engine

Batch
Prediction Job

on Prepared
Data

Data Sources

● CSV Files

● XML

● JSON

● APIs

● Data Lake (like

cloud storage)

Cloud DataFlow

Transform
Load

Target

● Data Warehouse

Eg: BigQuery

● Data Mart

● Data Lake

Eg: Cloud Storage

+

ETL Pipeline components Batch Processing

Transformation
Engine

Consumed for
ML pipeline

training/
prediction

Streaming Data Sources Transform
Load

Target

● Streaming data for

another pipeline

● Data Warehouse

Eg: BigQuery

● Data Mart

● Data Lake

Eg: Cloud Storage

Streaming

Pub Sub Cloud DataFlow

+

ETL Pipeline Components Stream Processing

