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 Model Serving 

Welcome



Introduction to Model Serving

Introduction



What exactly is Serving a Model?

Provide service or app 
for interaction

Make your model 
available to end user

Training a model is 
only the first part



Model Serving Patterns 

● A model,

● An interpreter, and

● Input data

Inference



ML workflows

● Model training

● Model prediction

Batch inference

Realtime inference



Latency

      ThroughputCost

Metrics to 
Optimize

Important Metrics



● Delay between user’s action and response of application to user’s action.

● Latency of the whole process, starting from sending data to server, performing 
inference using model and returning response.

● Minimal latency is a key requirement to maintain customer satisfaction.

100ms

200ms

Latency = 100 + 200 = 300ms

Latency



➔ Throughput -> Number of successful requests served per unit time say one 

second.

➔ In some applications only throughput is important and not latency.

Throughput



● The cost associated with each inference should be minimised.

○ Important Infrastructure requirements that are 

expensive:

■ CPU

■ Hardware Accelerators like GPU

■ Caching infrastructure for faster data retrieval.

Cost



• Airline Recommendation Service
• Reduce latency for user satisfaction

Minimizing 
Latency

• Airline recommendation service faces high load of 
inference requests per second.

Maximizing 
Throughput

Scale infrastructure (number of servers, caching requirements etc.) to meet 
requirements.

Minimizing Latency, Maximizing Throughput



● Cost increases as infrastructure is scaled 

● In applications where latency and throughput 

can suffer slightly:

○ Reduce costs by GPU sharing

○ Multi-model serving etc.,

○ Optimizing models used for inference

Balance Cost, Latency and Throughput



Introduction

Resources and 
Requirements for 

Serving Models



Prediction Accuracy

Prediction Latency

Model Size
Complex functions

Model Complexity

Optimizing Models for Serving



Model Complexity

As Model Complexity Increases Cost Increases

GPU
TPU

Model 
registry

Maintenance
burden 



The challenge for ML practitioners is to balance 
complexity and cost.

Balancing Cost and Complexity



Optimizing and Satisficing Metrics

Model’s optimizing metric:
● Accuracy
● Precision
● Recall

Satisficing (Gating) metric:
● Latency
● Model Size
● GPU load



Specify serving 
infrastructure

Increase model 
complexity

Improve 
predictive 

power

Hit gating 
metrics

Accept

Optimizing and Satisficing Metrics



GPUs for parallel 
throughput

TPUs for complex 
models and large 

batches

Hardware 
choices impact 

cost

Balancing 
complexity and 

hardware choices

Choices made at 
organizational 

level

Use of Accelerators in Serving Infrastructure



● Prediction request to your ML model might not provide all features required for 
prediction

● For example, estimating how long food delivery will require accessing features from a 
data store:

○ Incoming orders (not included in request)

○  Outstanding orders per minute in the past hour

● Additional pre-computed or aggregated features might be read in real-time from a data 
store

● Providing that data store is a cost

Maintaining Input Feature Lookup



Google Cloud Bigtable
Scaleable, handles dynamically changing data, 
millisecond read latency

Google Cloud Firestore
Scaleable, can handle slowly changing data,
millisecond read latency

NoSQL Databases: Caching and Feature Lookup

Amazon DynamoDB
Single digit millisecond read latency, in 
memory cache available

Google Cloud Memorystore
In memory cache, sub-millisecond read 
latency

  

NoSQL 
Databases

Expensive.
Carefully choose 
caching 
requirements



Model Deployments

● Huge data centers ● Embedded devices



Running in Huge Data Centers

Model efficiency Cost

● Optimize resource utilization
● Reduce cost



Constrained Environment: Mobile Phone

Average GPU memory size < 4GB.

Average Android app size ≅ 11MB

Users might not install your app if 
it uses too much storage



X

Restrictions in a Constrained Environment 

Large, complex models 
cannot be deployed to 
edge devices Will not work when prediction latency is 

important. E.g. autonomous car.



● Opt for on-device inference whenever possible

○ Enhances user experience by reducing the response time of your app

Prediction Latency is Almost Always Important

Millisecond 
turnaround

Model efficiency Cost



Choose Best Model for the Task



Profile and 
Benchmark

Optimize 
Operators

Optimize 
Model

Tweak 
Threads

Other Strategies



Python:
● FastAPI
● Flask
● Django

Java:
● Spring
● Apache Tomcat

Web Applications for Users

Users make requests via 
web application

Model wrapped as API 
service



Serving systems for easy deployment

● Model servers can manage of model deployment and expose prediction 

as a service

● Eliminate the need for putting models into custom web applications

● Easy to deploy models by writing just a few lines of code

● Makes it easy to update/rollback models on the fly

● Centralized model deployment
● Predictions as service

Eliminates need for custom web 
applications

Deployment just a few lines of code 
away

Easy to rollback/update models on the 
fly



Clipper

Open-source 
project from 
UC Berkeley

Multiple 
modeling 

frameworks
RESTful API

Cluster and 
resources 

management

Settings for 
reliable latency



TensorFlow Serving

Open-source 
project from 

Google

Serve 
TensorFlow 

models easily

Extensible to 
serve other 
model types

Uses REST and 
gRPC protocol

Version 
manager



Advantages of Serving with a Managed Service

Deployment of models trained on 
premises or on the Google Cloud 
Platform

Realtime endpoint for low-latency 
predictions on massive batches

Scale automatically based on traffic

Use GPU/TPU for faster predictions



TensorFlow Serving

Installing and Running 
TensorFlow Serving 



● Docker Images:

○ Easiest and most recommended method

○ Easiest way to get GPU support with TF Serving

docker pull tensorflow/serving

docker pull tensorflow/serving:latest-gpu

Install TensorFlow Serving



Available Binaries

tensorflow-model-server tensorflow-model-server-universal:

1. Fully optimized server
2. Uses some platform specific compiler 

optimizations
3. May not work on older machines

1. Compiled with basic optimizations
2. Doesn't include platform specific 

instruction sets
3. Works on most of the machines

Install TensorFlow Serving



● Building From Source 

○ See the complete documentation 

https://www.tensorflow.org/tfx/serving/setup#building_from_source

● Install using Aptitude (apt-get) on a Debian-based Linux system

Install TensorFlow Serving



Install TensorFlow Serving

!echo "deb http://storage.googleapis.com/tensorflow-serving-apt stable 

tensorflow-model-server tensorflow-model-server-universal" | tee 

/etc/apt/sources.list.d/tensorflow-serving.list && \

curl 

https://storage.googleapis.com/tensorflow-serving-apt/tensorflow-serving.

release.pub.gpg | apt-key add -

!apt update

!apt-get install tensorflow-model-server



Import the MNIST Dataset

mnist = tf.keras.datasets.mnist

(train_images, train_labels), (test_images, test_labels) = mnist.load_data()

# Scale the values of the arrays below to be between 0.0 and 1.0.

train_images = train_images / 255.0

test_images = test_images / 255.0



Import the MNIST Dataset

# Reshape the arrays below.

train_images = train_images.reshape(train_images.shape[0], 28, 28, 1)

test_images = test_images.reshape(test_images.shape[0], 28, 28, 1)

print('\ntrain_images.shape: {}, of {}'.format(train_images.shape, 

train_images.dtype))

print('test_images.shape: {}, of {}'.format(test_images.shape, test_images.dtype))

train_images.shape: (60000, 28, 28, 1), of float64

test_images.shape: (10000, 28, 28, 1), of float64



Look at a Sample Image

idx = 42

plt.imshow(test_images[idx].reshape(28,28), cmap=plt.cm.binary)

plt.title('True Label: {}'.format(test_labels[idx]), fontdict={'size': 16})

plt.show()



Build a Model

# Create a model.

model = tf.keras.Sequential([

        tf.keras.layers.Conv2D(input_shape=(28,28,1), filters=8, kernel_size=3,

                               strides=2, activation='relu', name='Conv1'),

        tf.keras.layers.Flatten(),

        tf.keras.layers.Dense(10, activation=tf.nn.softmax, name='Softmax')

])

model.summary()



Train the Model

# Configure the model for training.

model.compile(optimizer='adam', 

              loss='sparse_categorical_crossentropy',

              metrics=['accuracy'])

epochs = 5

# Train the model.

history = model.fit(train_images, train_labels, epochs=epochs)



Evaluate the Model

# Evaluate the model on the test images.

results_eval = model.evaluate(test_images, test_labels, verbose=0)

for metric, value in zip(model.metrics_names, results_eval):

    print(metric + ': {:.3}'.format(value))

loss: 0.098

accuracy: 0.969



Save the Model

MODEL_DIR = tempfile.gettempdir()
version = 1
export_path = os.path.join(MODEL_DIR, str(version))

if os.path.isdir(export_path):
    print('\n Already saved a model, cleaning up\n')
    !rm -r {export_path}

model.save(export_path, save_format="tf")

print('\nexport_path = {}'.format(export_path))
!ls -l {export_path}



Launch Your Saved Model

os.environ["MODEL_DIR"] = MODEL_DIR

%%bash --bg 

nohup tensorflow_model_server \

  --rest_api_port=8501 \

  --model_name=digits_model \

  --model_base_path="${MODEL_DIR}" >server.log 2>&1

!tail server.log



Send an Inference Request

data = json.dumps({"signature_name": "serving_default", "instances": 

test_images[0:3].tolist()})

headers = {"content-type": "application/json"}

json_response =   

     requests.post('http://localhost:8501/v1/models/digits_model:predict', 

              data=data, headers=headers)

predictions = json.loads(json_response.text)['predictions']



Plot Predictions

plt.figure(figsize=(10,15))

for i in range(3):

    plt.subplot(1,3,i+1)

    plt.imshow(test_images[i].reshape(28,28), cmap = plt.cm.binary)

    plt.axis('off')

    color = 'green' if np.argmax(predictions[i]) == test_labels[i] else 'red'

    plt.title('Prediction: {}\n True Label: {}'.format(np.argmax(predictions[i]), 

test_labels[i]), color=color)

    

plt.show()



Results Demo 


