
Copyright Notice
These slides are distributed under the Creative Commons License.

DeepLearning.AI makes these slides available for educational purposes. You may not
use or distribute these slides for commercial purposes. You may make copies of these
slides and use or distribute them for educational purposes as long as you
cite DeepLearning.AI as the source of the slides.

For the rest of the details of the license, see
https://creativecommons.org/licenses/by-sa/2.0/legalcode

http://deeplearning.ai/
http://deeplearning.ai/
https://creativecommons.org/licenses/by-sa/2.0/legalcode

 Model Serving

Welcome

Introduction to Model Serving

Introduction

What exactly is Serving a Model?

Provide service or app
for interaction

Make your model
available to end user

Training a model is
only the first part

Model Serving Patterns

● A model,

● An interpreter, and

● Input data

Inference

ML workflows

● Model training

● Model prediction

Batch inference

Realtime inference

Latency

 ThroughputCost

Metrics to
Optimize

Important Metrics

● Delay between user’s action and response of application to user’s action.

● Latency of the whole process, starting from sending data to server, performing
inference using model and returning response.

● Minimal latency is a key requirement to maintain customer satisfaction.

100ms

200ms

Latency = 100 + 200 = 300ms

Latency

➔ Throughput -> Number of successful requests served per unit time say one

second.

➔ In some applications only throughput is important and not latency.

Throughput

● The cost associated with each inference should be minimised.

○ Important Infrastructure requirements that are

expensive:

■ CPU

■ Hardware Accelerators like GPU

■ Caching infrastructure for faster data retrieval.

Cost

• Airline Recommendation Service
• Reduce latency for user satisfaction

Minimizing
Latency

• Airline recommendation service faces high load of
inference requests per second.

Maximizing
Throughput

Scale infrastructure (number of servers, caching requirements etc.) to meet
requirements.

Minimizing Latency, Maximizing Throughput

● Cost increases as infrastructure is scaled

● In applications where latency and throughput

can suffer slightly:

○ Reduce costs by GPU sharing

○ Multi-model serving etc.,

○ Optimizing models used for inference

Balance Cost, Latency and Throughput

Introduction

Resources and
Requirements for

Serving Models

Prediction Accuracy

Prediction Latency

Model Size
Complex functions

Model Complexity

Optimizing Models for Serving

Model Complexity

As Model Complexity Increases Cost Increases

GPU
TPU

Model
registry

Maintenance
burden

The challenge for ML practitioners is to balance
complexity and cost.

Balancing Cost and Complexity

Optimizing and Satisficing Metrics

Model’s optimizing metric:
● Accuracy
● Precision
● Recall

Satisficing (Gating) metric:
● Latency
● Model Size
● GPU load

Specify serving
infrastructure

Increase model
complexity

Improve
predictive

power

Hit gating
metrics

Accept

Optimizing and Satisficing Metrics

GPUs for parallel
throughput

TPUs for complex
models and large

batches

Hardware
choices impact

cost

Balancing
complexity and

hardware choices

Choices made at
organizational

level

Use of Accelerators in Serving Infrastructure

● Prediction request to your ML model might not provide all features required for
prediction

● For example, estimating how long food delivery will require accessing features from a
data store:

○ Incoming orders (not included in request)

○ Outstanding orders per minute in the past hour

● Additional pre-computed or aggregated features might be read in real-time from a data
store

● Providing that data store is a cost

Maintaining Input Feature Lookup

Google Cloud Bigtable
Scaleable, handles dynamically changing data,
millisecond read latency

Google Cloud Firestore
Scaleable, can handle slowly changing data,
millisecond read latency

NoSQL Databases: Caching and Feature Lookup

Amazon DynamoDB
Single digit millisecond read latency, in
memory cache available

Google Cloud Memorystore
In memory cache, sub-millisecond read
latency

NoSQL
Databases

Expensive.
Carefully choose
caching
requirements

Model Deployments

● Huge data centers ● Embedded devices

Running in Huge Data Centers

Model efficiency Cost

● Optimize resource utilization
● Reduce cost

Constrained Environment: Mobile Phone

Average GPU memory size < 4GB.

Average Android app size ≅ 11MB

Users might not install your app if
it uses too much storage

X

Restrictions in a Constrained Environment

Large, complex models
cannot be deployed to
edge devices Will not work when prediction latency is

important. E.g. autonomous car.

● Opt for on-device inference whenever possible

○ Enhances user experience by reducing the response time of your app

Prediction Latency is Almost Always Important

Millisecond
turnaround

Model efficiency Cost

Choose Best Model for the Task

Profile and
Benchmark

Optimize
Operators

Optimize
Model

Tweak
Threads

Other Strategies

Python:
● FastAPI
● Flask
● Django

Java:
● Spring
● Apache Tomcat

Web Applications for Users

Users make requests via
web application

Model wrapped as API
service

Serving systems for easy deployment

● Model servers can manage of model deployment and expose prediction

as a service

● Eliminate the need for putting models into custom web applications

● Easy to deploy models by writing just a few lines of code

● Makes it easy to update/rollback models on the fly

● Centralized model deployment
● Predictions as service

Eliminates need for custom web
applications

Deployment just a few lines of code
away

Easy to rollback/update models on the
fly

Clipper

Open-source
project from
UC Berkeley

Multiple
modeling

frameworks
RESTful API

Cluster and
resources

management

Settings for
reliable latency

TensorFlow Serving

Open-source
project from

Google

Serve
TensorFlow

models easily

Extensible to
serve other
model types

Uses REST and
gRPC protocol

Version
manager

Advantages of Serving with a Managed Service

Deployment of models trained on
premises or on the Google Cloud
Platform

Realtime endpoint for low-latency
predictions on massive batches

Scale automatically based on traffic

Use GPU/TPU for faster predictions

TensorFlow Serving

Installing and Running
TensorFlow Serving

● Docker Images:

○ Easiest and most recommended method

○ Easiest way to get GPU support with TF Serving

docker pull tensorflow/serving

docker pull tensorflow/serving:latest-gpu

Install TensorFlow Serving

Available Binaries

tensorflow-model-server tensorflow-model-server-universal:

1. Fully optimized server
2. Uses some platform specific compiler

optimizations
3. May not work on older machines

1. Compiled with basic optimizations
2. Doesn't include platform specific

instruction sets
3. Works on most of the machines

Install TensorFlow Serving

● Building From Source

○ See the complete documentation

https://www.tensorflow.org/tfx/serving/setup#building_from_source

● Install using Aptitude (apt-get) on a Debian-based Linux system

Install TensorFlow Serving

Install TensorFlow Serving

!echo "deb http://storage.googleapis.com/tensorflow-serving-apt stable

tensorflow-model-server tensorflow-model-server-universal" | tee

/etc/apt/sources.list.d/tensorflow-serving.list && \

curl

https://storage.googleapis.com/tensorflow-serving-apt/tensorflow-serving.

release.pub.gpg | apt-key add -

!apt update

!apt-get install tensorflow-model-server

Import the MNIST Dataset

mnist = tf.keras.datasets.mnist

(train_images, train_labels), (test_images, test_labels) = mnist.load_data()

Scale the values of the arrays below to be between 0.0 and 1.0.

train_images = train_images / 255.0

test_images = test_images / 255.0

Import the MNIST Dataset

Reshape the arrays below.

train_images = train_images.reshape(train_images.shape[0], 28, 28, 1)

test_images = test_images.reshape(test_images.shape[0], 28, 28, 1)

print('\ntrain_images.shape: {}, of {}'.format(train_images.shape,

train_images.dtype))

print('test_images.shape: {}, of {}'.format(test_images.shape, test_images.dtype))

train_images.shape: (60000, 28, 28, 1), of float64

test_images.shape: (10000, 28, 28, 1), of float64

Look at a Sample Image

idx = 42

plt.imshow(test_images[idx].reshape(28,28), cmap=plt.cm.binary)

plt.title('True Label: {}'.format(test_labels[idx]), fontdict={'size': 16})

plt.show()

Build a Model

Create a model.

model = tf.keras.Sequential([

 tf.keras.layers.Conv2D(input_shape=(28,28,1), filters=8, kernel_size=3,

 strides=2, activation='relu', name='Conv1'),

 tf.keras.layers.Flatten(),

 tf.keras.layers.Dense(10, activation=tf.nn.softmax, name='Softmax')

])

model.summary()

Train the Model

Configure the model for training.

model.compile(optimizer='adam',

 loss='sparse_categorical_crossentropy',

 metrics=['accuracy'])

epochs = 5

Train the model.

history = model.fit(train_images, train_labels, epochs=epochs)

Evaluate the Model

Evaluate the model on the test images.

results_eval = model.evaluate(test_images, test_labels, verbose=0)

for metric, value in zip(model.metrics_names, results_eval):

 print(metric + ': {:.3}'.format(value))

loss: 0.098

accuracy: 0.969

Save the Model

MODEL_DIR = tempfile.gettempdir()
version = 1
export_path = os.path.join(MODEL_DIR, str(version))

if os.path.isdir(export_path):
 print('\n Already saved a model, cleaning up\n')
 !rm -r {export_path}

model.save(export_path, save_format="tf")

print('\nexport_path = {}'.format(export_path))
!ls -l {export_path}

Launch Your Saved Model

os.environ["MODEL_DIR"] = MODEL_DIR

%%bash --bg

nohup tensorflow_model_server \

 --rest_api_port=8501 \

 --model_name=digits_model \

 --model_base_path="${MODEL_DIR}" >server.log 2>&1

!tail server.log

Send an Inference Request

data = json.dumps({"signature_name": "serving_default", "instances":

test_images[0:3].tolist()})

headers = {"content-type": "application/json"}

json_response =

 requests.post('http://localhost:8501/v1/models/digits_model:predict',

 data=data, headers=headers)

predictions = json.loads(json_response.text)['predictions']

Plot Predictions

plt.figure(figsize=(10,15))

for i in range(3):

 plt.subplot(1,3,i+1)

 plt.imshow(test_images[i].reshape(28,28), cmap = plt.cm.binary)

 plt.axis('off')

 color = 'green' if np.argmax(predictions[i]) == test_labels[i] else 'red'

 plt.title('Prediction: {}\n True Label: {}'.format(np.argmax(predictions[i]),

test_labels[i]), color=color)

plt.show()

Results Demo

