Copyright Notice

These slides are distributed under the Creative Commons License.

<u>DeepLearning.Al</u> makes these slides available for educational purposes. You may not use or distribute these slides for commercial purposes. You may make copies of these slides and use or distribute them for educational purposes as long as you cite <u>DeepLearning.Al</u> as the source of the slides.

For the rest of the details of the license, see <u>https://creativecommons.org/licenses/by-sa/2.0/legalcode</u>

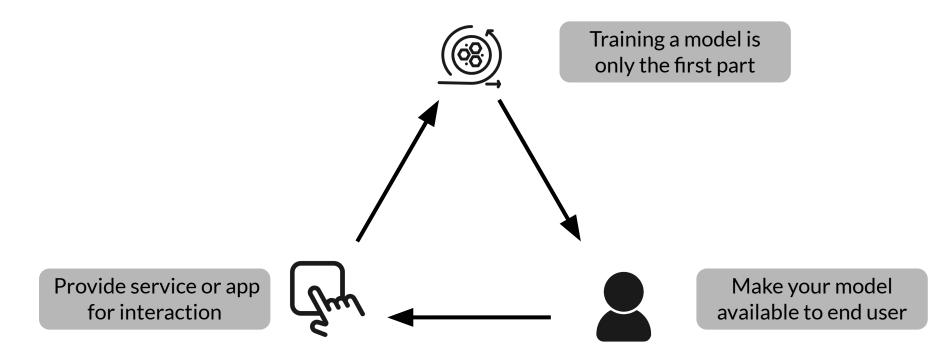
Model Serving

Welcome

Introduction to Model Serving

Introduction

What exactly is Serving a Model?



DeepLearning.Al

Model Serving Patterns

- A model,
- An interpreter, and
- Input data

Inference

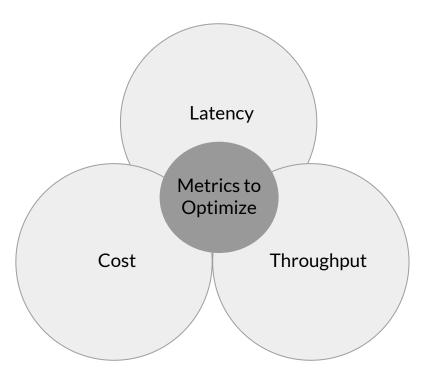
ML workflows

- Model training
- Model prediction

Batch inference

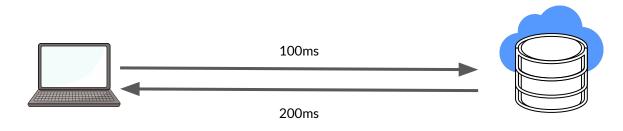
Realtime inference

Important Metrics



DeepLearning.Al

Latency



Latency = 100 + 200 = 300ms

- Delay between user's action and response of application to user's action.
- Latency of the whole process, starting from sending data to server, performing inference using model and returning response.
- Minimal latency is a key requirement to maintain customer satisfaction.

Throughput

- → Throughput -> Number of successful requests served per unit time say one second.
- \rightarrow In some applications only throughput is important and not latency.

- The cost associated with each inference should be minimised.
 - Important Infrastructure requirements that are expensive:
 - CPU
 - Hardware Accelerators like GPU
 - Caching infrastructure for faster data retrieval.

	3
	R

Minimizing Latency, Maximizing Throughput

Minimizing Latency

- Airline Recommendation Service
- Reduce latency for user satisfaction

Maximizing Throughput • Airline recommendation service faces high load of inference requests per second.

Scale infrastructure (number of servers, caching requirements etc.) to meet requirements.

Balance Cost, Latency and Throughput

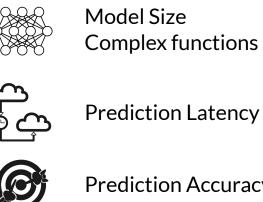
- Cost increases as infrastructure is scaled
- In applications where latency and throughput can suffer slightly:
 - Reduce costs by GPU sharing
 - Multi-model serving etc.,
 - Optimizing models used for inference

Introduction

Resources and Requirements for Serving Models

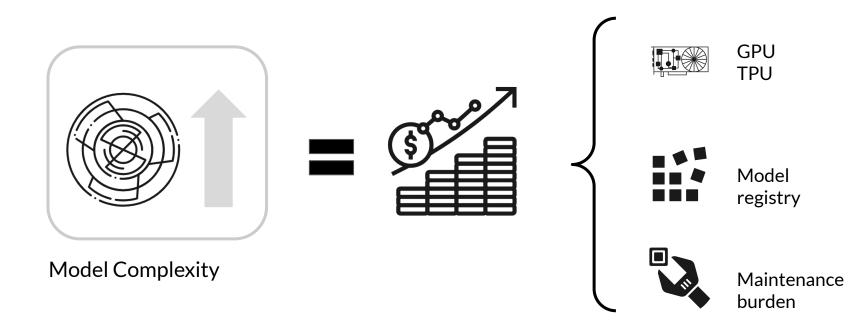
Optimizing Models for Serving

Model Complexity



Prediction Accuracy

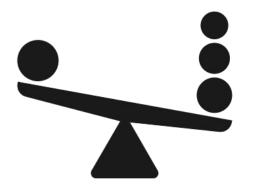
As Model Complexity Increases Cost Increases



DeepLearning.AI

Balancing Cost and Complexity

The challenge for ML practitioners is to balance complexity and cost.



DeepLearning.AI

Optimizing and Satisficing Metrics

Model's optimizing metric:

- Accuracy
- Precision
- Recall

Satisficing (Gating) metric:

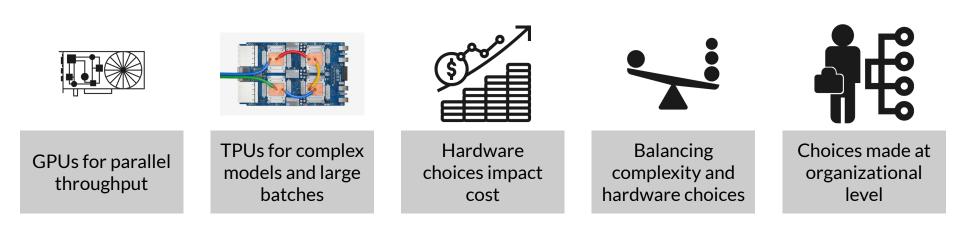
- Latency
- Model Size
- GPU load

Optimizing and Satisficing Metrics



DeepLearning.Al

Use of Accelerators in Serving Infrastructure



Maintaining Input Feature Lookup

- Prediction request to your ML model might not provide all features required for prediction
- For example, estimating how long food delivery will require accessing features from a data store:
 - Incoming orders (not included in request)
 - Outstanding orders per minute in the past hour
- Additional pre-computed or aggregated features might be read in real-time from a data store
- Providing that data store is a cost

NoSQL Databases: Caching and Feature Lookup

NoSQL Databases **Google Cloud Memorystore** In memory cache, sub-millisecond read latency

Google Cloud Firestore Scaleable, can handle slowly changing data, millisecond read latency

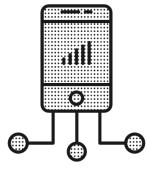
Google Cloud Bigtable Scaleable, handles dynamically changing data, millisecond read latency

Amazon DynamoDB Single digit millisecond read latency, in memory cache available Expensive. Carefully choose caching requirements

DeepLearning.Al

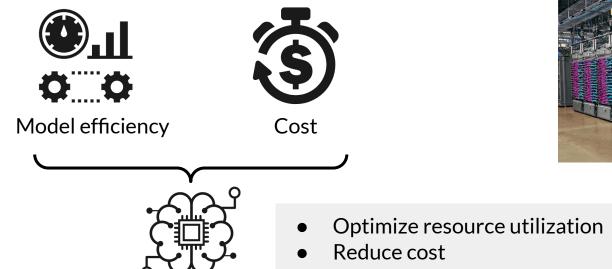
Model Deployments

• Huge data centers

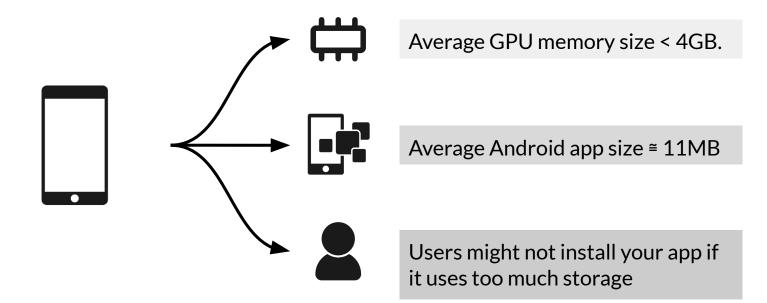


• Embedded devices

Running in Huge Data Centers

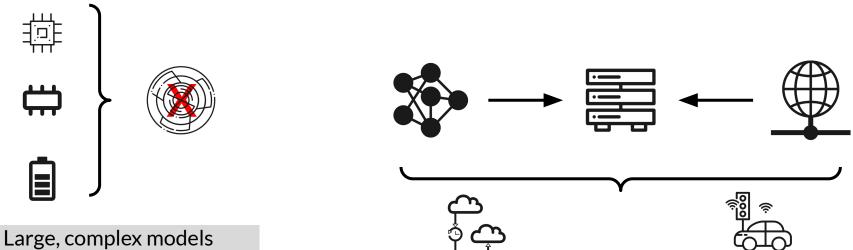


Constrained Environment: Mobile Phone



DeepLearning.AI

Restrictions in a Constrained Environment



Large, complex models cannot be deployed to edge devices

Will not work when prediction latency is important. E.g. autonomous car.

DeepLearning.AI

Prediction Latency is Almost Always Important

- Opt for on-device inference whenever possible
 - Enhances user experience by reducing the response time of your app

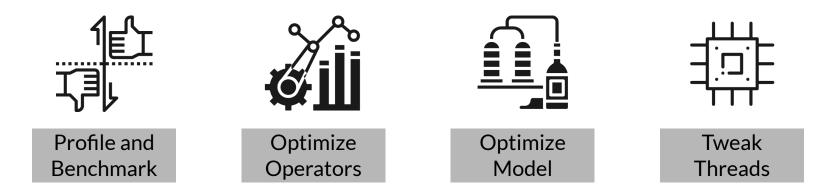
Millisecond turnaround

Model efficiency

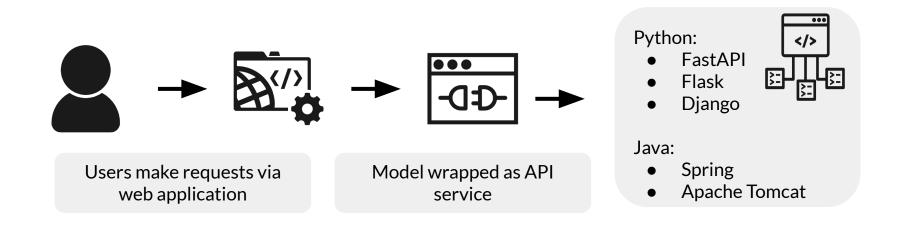
Choose Best Model for the Task

DeepLearning.Al

Other Strategies



Web Applications for Users



DeepLearning.Al

Serving systems for easy deployment

Centralized model deployment
 Predictions as service

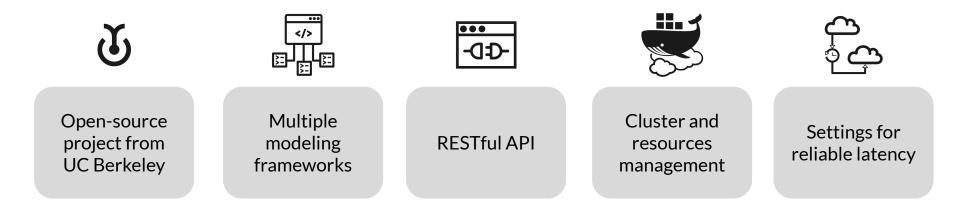
Eliminates need for custom web applications

-</>

Deployment just a few lines of code away

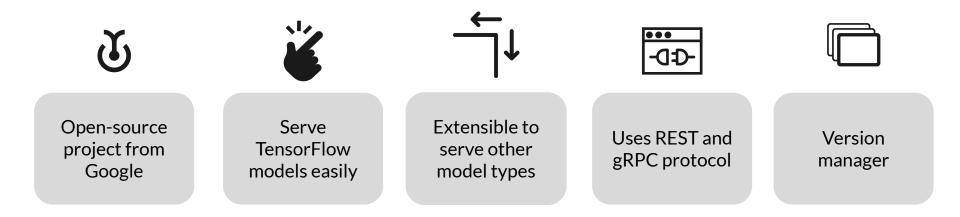
Easy to rollback/update models on the fly

Clipper



DeepLearning.AI

TensorFlow Serving



DeepLearning.AI

Advantages of Serving with a Managed Service

Realtime endpoint for low-latency predictions on massive batches

Deployment of models trained on premises or on the Google Cloud Platform

Scale automatically based on traffic

Use GPU/TPU for faster predictions

TensorFlow Serving

Installing and Running TensorFlow Serving

Install TensorFlow Serving

- Docker Images:
 - Easiest and most recommended method
 - Easiest way to get GPU support with TF Serving

docker pull tensorflow/serving docker pull tensorflow/serving:latest-gpu

Install TensorFlow Serving

Available Binaries			
tensorflow-model-server	tensorflow-model-server-universal:		
 Fully optimized server Uses some platform specific compiler optimizations May not work on older machines 	 Compiled with basic optimizations Doesn't include platform specific instruction sets Works on most of the machines 		

Install TensorFlow Serving

- Building From Source
 - See the complete documentation

https://www.tensorflow.org/tfx/serving/setup#building_from_source

• Install using Aptitude (apt-get) on a Debian-based Linux system

Install TensorFlow Serving

!echo "deb http://storage.googleapis.com/tensorflow-serving-apt stable tensorflow-model-server tensorflow-model-server-universal" | tee /etc/apt/sources.list.d/tensorflow-serving.list && \ curl https://storage.googleapis.com/tensorflow-serving-apt/tensorflow-serving. release.pub.gpg | apt-key add -!apt update

!apt-get install tensorflow-model-server

```
mnist = tf.keras.datasets.mnist
(train_images, train_labels), (test_images, test_labels) = mnist.load_data()
# Scale the values of the arrays below to be between 0.0 and 1.0.
train_images = train_images / 255.0
test_images = test_images / 255.0
```

Import the MNIST Dataset

Reshape the arrays below.

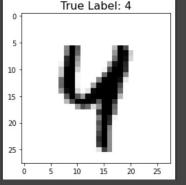
```
train_images = train_images.reshape(train_images.shape[0], 28, 28, 1)
test_images = test_images.reshape(test_images.shape[0], 28, 28, 1)
print('\ntrain_images.shape: {}, of {}'.format(train_images.shape,
train_images.dtype))
print('test_images.shape: {}, of {}'.format(test_images.shape, test_images.dtype))
```

train_images.shape: (60000, 28, 28, 1), of float64
test_images.shape: (10000, 28, 28, 1), of float64

Look at a Sample Image

idx = 42

plt.imshow(test_images[idx].reshape(28,28), cmap=plt.cm.binary)
plt.title('True Label: {}'.format(test_labels[idx]), fontdict={'size': 16})
plt.show()
True Label: 4



Build a Model

Create a model.

```
model = tf.keras.Sequential([
```

```
tf.keras.layers.Flatten(),
```

```
tf.keras.layers.Dense(10, activation=tf.nn.softmax, name='Softmax')
```

])

model.summary()

Train the Model

epochs = 5

```
# Train the model.
history = model.fit(train_images, train_labels, epochs=epochs)
```

Evaluate the Model

```
# Evaluate the model on the test images.
```

results_eval = model.evaluate(test_images, test_labels, verbose=0)

for metric, value in zip(model.metrics_names, results_eval):
 print(metric + ': {:.3}'.format(value))

loss: 0.098 accuracy: 0.969

Save the Model

```
MODEL_DIR = tempfile.gettempdir()
version = 1
export_path = os.path.join(MODEL_DIR, str(version))
```

```
if os.path.isdir(export_path):
    print('\n Already saved a model, cleaning up\n')
    !rm -r {export_path}
```

```
model.save(export_path, save_format="tf")
```

```
print('\nexport_path = {}'.format(export_path))
!ls -l {export path}
```

Launch Your Saved Model

```
os.environ["MODEL_DIR"] = MODEL_DIR
%%bash --bg
nohup tensorflow model server \
```

```
--rest_api_port=8501 \
```

```
--model_name=digits_model \
```

```
--model_base_path="${MODEL_DIR}" >server.log 2>&1
!tail server.log
```

Send an Inference Request

```
data = json.dumps({"signature_name": "serving_default", "instances":
test_images[0:3].tolist()})
```

```
headers = {"content-type": "application/json"}
```

```
predictions = json.loads(json_response.text)['predictions']
```

Plot Predictions

plt.figure(figsize=(10,15))

```
for i in range(3):
    plt.subplot(1,3,i+1)
    plt.imshow(test_images[i].reshape(28,28), cmap = plt.cm.binary)
    plt.axis('off')
    color = 'green' if np.argmax(predictions[i]) == test_labels[i] else 'red'
    plt.title('Prediction: {}\n True Label: {}'.format(np.argmax(predictions[i]),
test_labels[i]), color=color)
```

plt.show()

Results Demo

