
Copyright Notice
These slides are distributed under the Creative Commons License.

DeepLearning.AI makes these slides available for educational purposes. You may not
use or distribute these slides for commercial purposes. You may make copies of these
slides and use or distribute them for educational purposes as long as you
cite DeepLearning.AI as the source of the slides.

For the rest of the details of the license, see
https://creativecommons.org/licenses/by-sa/2.0/legalcode

http://deeplearning.ai/
http://deeplearning.ai/
https://creativecommons.org/licenses/by-sa/2.0/legalcode

 Welcome

Model Analysis

 Model Performance

Analysis

Model Analysis Overview

● Is model performing well?

● Is there scope for improvement?

● Can the data change in future?

● Has the data changed since you created your training dataset?

What is next after model training/deployment?

Black box evaluation vs model introspection

● Models can be tested for metrics like accuracy and losses like test error

without knowing internal details

● For finer evaluation, models can be inspected part by part

Black box evaluation

Model introspection

Performance metrics vs optimization objectives

● Performance metrics will vary based
on the task like regression,
classification, etc.

● Within a type of task, based on the
end-goal, your performance metrics
may be different

● Performance is measured after a
round of optimization

● Machine Learning formulates the
problem statement into an objective
function

● Learning algorithms find optimum
values for each variable to converge
into local/global minima

https://cs231n.github.io/neural-networks-3/

Performance metrics vs optimization objectives

https://cs231n.github.io/neural-networks-3/

Top level aggregate metrics vs slicing

● Most of the time, metrics are calculated on the entire dataset

● Slicing deals with understanding how the model is performing on each

subset of data

 Introduction to TensorFlow

Model Analysis

 Advanced Model Analysis and
Debugging

Why should you slice your data?

Your top-level metrics may hide problems

● Your model may not perform well for particular [customers | products |

stores | days of the week | etc.]

Each prediction request is an individual event, maybe an individual
customer

● For example, customers may have a bad experience

● For example, some stores may perform badly

TensorFlow Model Analysis (TFMA)

Open source
library

Scalable
framework

Ensures models
meet required

quality
thresholds

Used to compute
and visualize

evaluation
metrics

Inspect model’s
performance

against different
slices of data

Architecture

Read
Inputs

T
f. E

xam
p

le

Write
Results

analysis

metrics

...

Evaluators AnalysisEvaluator(Default)
CustomEvaluator(Optional)

MetricsandPlotsEvaluator(default)

Group
By
Slices

Compute/
Combine

Predict
(default)

Slice
Keys

(default)

Custom
Extractor
(optional)

Extractors

ExtractAndEvaluate

...

One model vs multiple models over time

TensorFlow metrics in TensorFlow
model analysis

M
et

ri
c

va
lu

e

TensorFlow metrics in TensorBoard
M

et
ri

c
va

lu
e

Global steps

Aggregate vs sliced metrics

Aggregate metric computed over
entire eval dataset

1 - Specificity

Se
n

si
ti

vi
ty

Metric “sliced” by different segments
of the eval dataset

1 - Specificity

Se
n

si
ti

vi
ty

Streaming vs full-pass metrics

Streaming metrics are approximations
computed on mini-batches of data

TensorBoard visualizes metrics
through mini-batches

Apache Beam is used for scaling on
large datasets

TFMA gives evaluation results after
running through entire dataset

 Advanced Model Analysis and
Debugging

TFMA in Practice

TFMA in practice

● Analyse impact of different slices of data over various metrics

● How to track metrics over time?

import tensorflow as tf

import tensorflow_transform as tft

import tensorflow_model_analysis as tfma

Step 1: Export EvalSavedModel for TFMA

def get_serve_tf_examples_fn(model, tf_transform_output):

 # Return a function that parses a serialized tf.Example and applies TFT

 tf_transform_output = tft.TFTransformOutput(transform_output_dir)

signatures = {

 'serving_default': get_serve_tf_examples_fn(model, tf_transform_output)

 .get_concrete_function(tf.TensorSpec(...)),

}

model.save(serving_model_dir_path, save_format='tf', signatures=signatures)

Specify slicing spec

slice_spec = [slicer.SingleSliceSpec(columns=[‘column_name’]), ...]

Define metrics

metrics = [tf.keras.metrics.Accuracy(name='accuracy'),

 tfma.metrics.MeanPrediction(name='mean_prediction'), ...]

metrics_specs = tfma.metrics.specs_from_metrics(metrics)

Step 2: Create EvalConfig

eval_config = tfma.EvalConfig(

 model_specs=[tfma.ModelSpec(label_key=features.LABEL_KEY)],

 slicing_specs=slice_spec,

 metrics_specs=metrics_specs, ...)

Specify the path to the eval graph and to where the result should be written

eval_model_dir = ...

result_path = ...

eval_shared_model = tfma.default_eval_shared_model(

eval_saved_model_path=eval_model_dir,

eval_config=eval_config)

Step 3: Analyze model

Run TensorFlow Model Analysis

eval_result = tfma.run_model_analysis(eval_shared_model=eval_shared_model,

 output_path=result_path,

 ...)

render results

tfma.viewer.render_slicing_metrics(result)

Step 4: Visualizing metrics

 Model Debugging

Overview

 Advanced Model Analysis and
Debugging

Model robustness

● Robustness is much more than generalization

● Is the model accurate even for slightly corrupted input data?

Robustness metrics

Split data in to train/val/dev sets

Specific metrics for regression and classification problems

Robustness measurement shouldn’t take place during training

Model debugging

● Deals with detecting and dealing with problems in ML systems

● Applies mainstream software engineering practices to ML models

Privacy
harms

Social
discrimination

Security
vulnerabilities

Model
decay

Opaqueness

Model Debugging Objectives

Sensitivity

analysis

Benchmark

models

Residual

analysis

Model Debugging Techniques

Advanced Model Analysis and
Debugging

Benchmark Models

Simple, trusted and interpretable models solving the same problem

Compare your ML model against these models

Benchmark model is the starting point of ML development

Benchmark models

 Advanced Model Analysis and
Debugging

Sensitivity Analysis and
Adversarial Attacks

Sensitivity analysis

● Simulate data of your choice and see what your model predicts

● See how model reacts to data which has never been used before

What-If Tool for sensitivity analysis

Random Attacks

● Expose models to high volumes of random input data

● Exploits the unexpected software and math bugs

● Great way to start debugging

Partial dependence plots

● Visualize the effects of changing one or more variables in your model

● PDPbox and PyCEbox open source packages

How vulnerable to attacks is your model?

● Attacks are aimed at fooling your model

● Successful attacks could be catastrophic

● Test adversarial examples

● Harden your model

Sensitivity can mean vulnerability

A Famous Example: Ostrich

How vulnerable to attacks is your model?

Example:

A self-driving car crashes because black

and white stickers applied to a stop sign
cause a classifier to interpret it as a Speed
Limit 45 sign.

How vulnerable to attacks is your model?

Example:

A spam detector fails to classify an email as

spam. The spam mail has been designed to
look like a normal email, but is actually
phishing.

How vulnerable to attacks is your model?

Example:

A machine-learning powered scanner scans

suitcases for weapons at an airport. A knife
was developed to avoid detection by
making the system think it is an umbrella.

● Informational Harm: Leakage of information

● Behavioral Harm: Manipulating the behavior of the model

Informational and Behavioral Harms

Informational Harms

● Membership Inference: was this person’s data

used for training?

● Model Inversion: recreate the training data

● Model Extraction: recreate the model

Behavioral Harms

● Poisoning: insert malicious data into

training data

● Evasion: input data that causes the model

to intentionally misclassify that data

Measuring your vulnerability to attack

Cleverhans:

an open-source Python library to benchmark

machine learning systems' vulnerability to

adversarial examples

Foolbox:

an open-source Python library that lets you

easily run adversarial attacks against machine

learning models

Attempted defenses against adversarial examples

● Defensive distillation

Adversarial example searches

 Advanced Model Analysis and
Debugging

Residual Analysis

Residual analysis

● Measures the difference between model’s predictions and ground truth

● Randomly distributed errors are good

● Correlated or systematic errors show that a model can be improved

Systematic = BadRandom = Good

Residual analysis

Residual analysis

● Residuals should not be correlated with another feature

● Adjacent residuals should not be correlated with each other

(autocorrelation)

 Advanced Model Analysis and
Debugging

Model Remediation

Remediation techniques

Adding synthetic data into training set

Helps correct for unbalanced training data

Data
augmentation

Overcome myth of neural networks as black box

Understand how data is getting transformed

Interpretable and
explainable ML

Remediation techniques

● Model editing:
○ Applies to decision trees

○ Manual tweaks to adapt your use case

● Model assertions:
○ Implement business rules that override model predictions

Include people with varied backgrounds
for collecting training data

Conduct feature selection on training data

Use fairness metrics to select hyperparameters
and decision cut-off thresholds

Remediation techniques

Discrimination
remediation

Remediation techniques

● Conduct model debugging at regular intervals

● Inspect accuracy, fairness, security problems, etc

Anomaly

detection

Model

monitoring

● Anomalies can be a warning of an attack

● Enforce data integrity constraints on incoming data

Fairness

 Advanced Model Analysis and
Debugging

Fairness indicators

● Open source library to compute fairness metrics

● Easily scales across dataset of any size

● Built in top of TFMA

What does fairness indicators do?

● Compute commonly-identified fairness metrics for classification

models

● Compare model performance across subgroups to other models

● No remediation tools provided

Evaluate at individual slices

● Overall metrics can hide poor performance for certain parts of data

● Some metrics may fare well over others

Aspects to consider

● Establish context and different user types

● Seek domain experts help

● Use data slicing widely and wisely

General guidelines

● Compute performance metrics at all slices of data

● Evaluate your metrics across multiple thresholds

● If decision margin is small, report in more detail

Measuring Fairness

 Advanced Model Analysis and
Debugging

Positive rate / Negative rate

● Percentage data points classified as positive/negative

● Independent of ground truth

● Use case: having equal final percentages of groups is important

● TPR: percentage of positive data points that are correctly labeled

positive

● FNR: percentage of positive data points that are incorrectly labeled

negative

● Measures equality of opportunity, when the positive class should be

equal across subgroups

● Use case: where it is important that same percent of qualified

candidates are rated positive in each group

True positive rate (TPR) / False negative rate (FNR)

● TNR: percentage of negative data points that are correctly labeled

negative

● FPR: percentage of negative data points that are incorrectly labeled

positive

● Measures equality of opportunity, when the negative class should be

equal across subgroup

● Use case: where misclassifying something as positive are more

concerning than classifying the positives

True negative rate (TNR) / False positive rate (FPR)

Accuracy & Area under the curve (AUC)

● Accuracy: The percentage of data points that are correctly labeled

● AUC: The percentage of data points that are correctly labeled when

each class is given equal weight independent of number of samples

● Metrics related to predictive parity

● Use case: when precision is critical

Good fairness indicators doesn’t always mean
the model is fair

Unfair skews if there is a gap in a metric
between two groups

Conduct adversarial testing for rare, malicious
examples

Continuous evaluation throughout
development and deployment

Tips

About the CelebA dataset

● 200K celebrity images

● Each image has 40 attribute annotations

● Each image has 5 landmark locations

● Assumption on smiling attribute

Fairness indicators in practice

Build a classifier to detect smiling

Evaluate fairness and performance across age groups

Generate visualizations to gain model performance insight

Continuous evaluation and
monitoring

Continuous Evaluation and
Monitoring

Why do models need to be monitored?

● Training data is a snapshot of the world at a point in time

● Many types of data change over time, some quickly

● ML Models do not get better with age

● As model performance degrades, you want an early warning

● Concept drift: loss of prediction quality

● Concept Emergence: new type of data distribution

● Types of dataset shift:

○ covariate shift

○ prior probability shift

Data drift and shift

Raw Data

Prediction

Preprocessing

Model

How are models monitored?

Monitoring

Training Data

Labeling

Models number of error as binomial random variable

Alert rule

Method used is drift detection method

Statistical process control

Method used is linear four rates

If data is stationary, contingency table should remain constant

Sequential analysis

Calculate mean error rate at every window of data

Size of window adapts, becoming shorter when data is not stationary

Method used is Adaptive Windowing (ADWIN)

Error distribution monitoring

Clustering/novelty detection

● Assign data to known cluster or detect emerging concept

● Multiple algorithms available: OLINDDA, MINAS, ECSMiner, and GC3

● Susceptible to curse of dimensionality

● Does not detect population level changes

Monitors individual feature separately at every window of data

Use PCA to reduce number of features

Pearson correlation in Change of Concept

Algorithms to compare:

Hellinger Distance in HDDDM

Feature distribution monitoring

Model-dependent monitoring

● Concentrate efforts near decision margin in latent space

● One algorithm is Margin Density Drift Detection (MD3)

● Area in latent space where classifiers have low confidence matter more

● Reduces false alarm rate effectively

Google Cloud AI Continuous Evaluation

● Leverages AI Platform Prediction and Data Labeling services

● Deploy your model to AI Platform Prediction with model version

● Create evaluation job

● Input and output are saved in BigQuery table

● Run evaluation job on few of these samples

● View the evaluation metrics on Google Cloud console

How often should you retrain?

● Depends on the rate of change

● If possible, automate the management of detecting model drift and

triggering model retraining

How often should you retrain?

