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● Is model performing well? 

● Is there scope for improvement?

● Can the data change in future?

● Has the data changed since you created your training dataset?

What is next after model training/deployment?



Black box evaluation vs model introspection

● Models can be tested for metrics like accuracy and losses like test error 

without knowing internal details

● For finer evaluation, models can be inspected part by part



Black box evaluation



Model introspection



Performance metrics vs optimization objectives

● Performance metrics will vary based 
on the task like regression, 
classification, etc.

● Within a type of task, based on the 
end-goal, your performance metrics 
may be different

● Performance is measured after a 
round of optimization

● Machine Learning formulates the 
problem statement into an objective 
function

● Learning algorithms find optimum 
values for each variable to converge 
into local/global minima



https://cs231n.github.io/neural-networks-3/

Performance metrics vs optimization objectives

https://cs231n.github.io/neural-networks-3/


Top level aggregate metrics vs slicing

● Most of the time, metrics are calculated on the entire dataset

● Slicing deals with understanding how the model is performing on each 

subset of data
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Why should you slice your data?

Your top-level metrics may hide problems

● Your model may not perform well for particular [customers | products | 

stores | days of the week | etc.]

Each prediction request is an individual event, maybe an individual 
customer

● For example, customers may have a bad experience

● For example, some stores may perform badly



TensorFlow Model Analysis (TFMA)

Open source  
library

Scalable 
framework

Ensures models 
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quality 
thresholds
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and visualize 

evaluation 
metrics 

Inspect model’s 
performance 

against different 
slices of data
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One model vs multiple models over time

TensorFlow metrics in TensorFlow 
model analysis
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Aggregate vs sliced metrics

Aggregate metric computed over 
entire eval dataset
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Streaming vs full-pass metrics

Streaming metrics are approximations 
computed on mini-batches of data

TensorBoard visualizes metrics 
through mini-batches

Apache Beam is used for scaling on 
large datasets

TFMA gives evaluation results after 
running through entire dataset
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TFMA in practice

● Analyse impact of different slices of data over various metrics

● How to track metrics over time?



import tensorflow as tf

import tensorflow_transform as tft

import tensorflow_model_analysis as tfma

Step 1: Export EvalSavedModel for TFMA

def get_serve_tf_examples_fn(model, tf_transform_output):

  # Return a function that parses a serialized tf.Example and applies TFT

  tf_transform_output = tft.TFTransformOutput(transform_output_dir)

signatures = {

  'serving_default': get_serve_tf_examples_fn(model, tf_transform_output)

                        .get_concrete_function(tf.TensorSpec(...)),

}

model.save(serving_model_dir_path, save_format='tf', signatures=signatures)



# Specify slicing spec

slice_spec = [slicer.SingleSliceSpec(columns=[‘column_name’]), ...]

# Define metrics

metrics = [tf.keras.metrics.Accuracy(name='accuracy'),

           tfma.metrics.MeanPrediction(name='mean_prediction'), ...]

metrics_specs = tfma.metrics.specs_from_metrics(metrics)

Step 2: Create EvalConfig

eval_config = tfma.EvalConfig(

              model_specs=[tfma.ModelSpec(label_key=features.LABEL_KEY)],

              slicing_specs=slice_spec,

              metrics_specs=metrics_specs, ...)



# Specify the path to the eval graph and to where the result should be written

eval_model_dir = ...

result_path = ...

eval_shared_model = tfma.default_eval_shared_model(

eval_saved_model_path=eval_model_dir,

eval_config=eval_config)

Step 3: Analyze model

# Run TensorFlow Model Analysis

eval_result = tfma.run_model_analysis(eval_shared_model=eval_shared_model,

                                      output_path=result_path,

                                      ...)



# render results

tfma.viewer.render_slicing_metrics(result)

Step 4: Visualizing metrics
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Model robustness

● Robustness is much more than generalization 

● Is the model accurate even for slightly corrupted input data?



Robustness metrics

Split data in to train/val/dev sets

Specific metrics for regression and classification problems

Robustness measurement shouldn’t take place during training



Model debugging

● Deals with detecting and dealing with problems in ML systems

● Applies mainstream software engineering practices to ML models



Privacy 
harms

Social 
discrimination

Security 
vulnerabilities

Model 
decay

Opaqueness

Model Debugging Objectives



Sensitivity 

analysis

Benchmark 

models

Residual 

analysis

Model Debugging Techniques
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Simple, trusted and interpretable models solving the same problem

Compare your ML model against these models

Benchmark model is the starting point of ML development

Benchmark models
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Sensitivity analysis

● Simulate data of your choice and see what your model predicts

● See how model reacts to data which has never been used before



What-If Tool for sensitivity analysis



Random Attacks

● Expose models to high volumes of random input data

● Exploits the unexpected software and math bugs

● Great way to start debugging



Partial dependence plots  

● Visualize the effects of changing one or more variables in your model

● PDPbox and PyCEbox open source packages



How vulnerable to attacks is your model?

● Attacks are aimed at fooling your model

● Successful attacks could be catastrophic

● Test adversarial examples

● Harden your model

Sensitivity can mean vulnerability



A Famous Example: Ostrich



How vulnerable to attacks is your model?

Example:

A self-driving car crashes because black 

and white stickers applied to a stop sign 
cause a classifier to interpret it as a Speed 
Limit 45 sign.



How vulnerable to attacks is your model?

Example:

A spam detector fails to classify an email as 

spam. The spam mail has been designed to 
look like a normal email, but is actually 
phishing.



How vulnerable to attacks is your model?

Example:

A machine-learning powered scanner scans 

suitcases for weapons at an airport.  A knife 
was developed to avoid detection by 
making the system think it is an umbrella.



● Informational Harm: Leakage of information

● Behavioral Harm: Manipulating the behavior of the model

Informational and Behavioral Harms



Informational Harms

● Membership Inference: was this person’s data 

used for training?

● Model Inversion: recreate the training data

● Model Extraction: recreate the model



Behavioral Harms

● Poisoning: insert malicious data into 

training data

● Evasion: input data that causes the model 

to intentionally misclassify that data



Measuring your vulnerability to attack

Cleverhans:

an open-source Python library to benchmark 

machine learning systems' vulnerability to 

adversarial examples

Foolbox:

an open-source Python library that lets you 

easily run adversarial attacks against machine 

learning models



Attempted defenses against adversarial examples

● Defensive distillation

Adversarial example searches
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Residual analysis

● Measures the difference between model’s predictions and ground truth

● Randomly distributed errors are good

● Correlated or systematic errors show that a model can be improved



Systematic = BadRandom = Good

Residual analysis



Residual analysis

● Residuals should not be correlated with another feature

● Adjacent residuals should not be correlated with each other 

(autocorrelation)
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Remediation techniques

Adding synthetic data into training set

Helps correct for  unbalanced training data

Data 
augmentation

Overcome myth of neural networks as black box

Understand how data is getting transformed

Interpretable and 
explainable ML



Remediation techniques

● Model editing:
○ Applies to decision trees

○ Manual tweaks to adapt your use case

● Model assertions:
○ Implement business rules that override model predictions



Include people with varied backgrounds
for collecting training data

Conduct feature selection on training data

Use fairness metrics to select hyperparameters
and decision cut-off thresholds

Remediation techniques

Discrimination 
remediation



Remediation techniques

● Conduct model debugging at regular intervals

● Inspect accuracy, fairness, security problems, etc

Anomaly 

detection

Model 

monitoring

● Anomalies can be a warning of an attack

● Enforce data integrity constraints on incoming data



Fairness
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Fairness indicators

● Open source library to compute fairness metrics

● Easily scales across dataset of any size

● Built in top of TFMA



What does fairness indicators do?

● Compute commonly-identified fairness metrics for classification 

models

● Compare model performance across subgroups to other models

● No remediation tools provided



Evaluate at individual slices

● Overall metrics can hide poor performance for certain parts of data

● Some metrics may fare well over others



Aspects to consider

● Establish context and different user types

● Seek domain experts help

● Use data slicing widely and wisely



General guidelines

● Compute performance metrics at all slices of data

● Evaluate your metrics across multiple thresholds

● If decision margin is small, report in more detail



Measuring Fairness 
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Positive rate / Negative rate

● Percentage data points classified as positive/negative

● Independent of ground truth

● Use case: having equal final percentages of groups is important



● TPR: percentage of positive data points that are correctly labeled 

positive 

● FNR: percentage of positive data points that are incorrectly labeled 

negative

● Measures equality of opportunity, when the positive class should be 

equal across subgroups

● Use case: where it is important that same percent of qualified 

candidates are rated positive in each group

True positive rate (TPR) / False negative rate (FNR)



● TNR: percentage of negative data points that are correctly labeled 

negative

● FPR: percentage of negative data points that are  incorrectly labeled 

positive

● Measures equality of opportunity, when the negative class should be 

equal across subgroup

● Use case: where misclassifying something as positive are more 

concerning than classifying the positives

True negative rate (TNR) / False positive rate (FPR)



Accuracy & Area under the curve (AUC)

● Accuracy: The percentage of data points that are correctly labeled 

● AUC: The percentage of data points that are correctly labeled when 

each class is given equal weight independent of number of samples

● Metrics related to predictive parity

● Use case: when precision is critical



Good fairness indicators doesn’t always mean 
the model is fair

Unfair skews if there is a gap in a metric 
between two groups

Conduct adversarial testing for rare, malicious 
examples

Continuous evaluation throughout 
development and deployment

Tips



About the CelebA dataset

● 200K celebrity images

● Each image has 40 attribute annotations

● Each image has 5 landmark locations

● Assumption on smiling attribute



Fairness indicators in practice

Build a classifier to detect smiling

Evaluate fairness and performance across age groups 

Generate visualizations to gain model performance insight



Continuous evaluation and 
monitoring

Continuous Evaluation and 
Monitoring



Why do models need to be monitored?

● Training data is a snapshot of the world at a point in time

● Many types of data change over time, some quickly

● ML Models do not get better with age

● As model performance degrades, you want an early warning



● Concept drift: loss of prediction quality

● Concept Emergence: new type of data distribution

● Types of dataset shift:

○ covariate shift

○ prior probability shift

Data drift and shift



Raw Data

Prediction

Preprocessing

Model

How are models monitored?

Monitoring

Training Data

Labeling



Models number of error as binomial random variable

Alert rule

Method used is drift detection method

Statistical process control



Method used is linear four rates

If data is stationary, contingency table should remain constant

Sequential analysis



Calculate mean error rate at every window of data

Size of window adapts, becoming shorter when data is not stationary

Method used is Adaptive Windowing (ADWIN)

Error distribution monitoring



Clustering/novelty detection

● Assign data to known cluster or detect emerging concept

●  Multiple algorithms available: OLINDDA, MINAS, ECSMiner, and GC3

● Susceptible to curse of dimensionality

● Does not detect population level changes



Monitors individual feature separately at every window of data

Use PCA to reduce number of features

Pearson correlation in Change of Concept

Algorithms to compare:

Hellinger Distance in HDDDM

Feature distribution monitoring



Model-dependent monitoring

● Concentrate efforts near decision margin in latent space

● One algorithm is Margin Density Drift Detection (MD3)

● Area in latent space where classifiers have low confidence matter more

● Reduces false alarm rate effectively



Google Cloud AI Continuous Evaluation

● Leverages AI Platform Prediction and Data Labeling  services

● Deploy your model to AI Platform Prediction with model version

● Create evaluation job

● Input and output are saved in BigQuery table

● Run evaluation job on few of these samples

● View the evaluation metrics on Google Cloud console



How often should you retrain?

● Depends on the rate of change

● If possible, automate the management of detecting model drift and 

triggering model retraining



How often should you retrain?


