
Copyright Notice
These slides are distributed under the Creative Commons License.

DeepLearning.AI makes these slides available for educational purposes. You may not
use or distribute these slides for commercial purposes. You may make copies of these
slides and use or distribute them for educational purposes as long as you
cite DeepLearning.AI as the source of the slides.

For the rest of the details of the license, see
https://creativecommons.org/licenses/by-sa/2.0/legalcode

http://deeplearning.ai/
http://deeplearning.ai/
https://creativecommons.org/licenses/by-sa/2.0/legalcode

High Performance Modeling

Welcome

Distributed Training

High Performance Modeling

Rise in computational requirements

● At first, training models is quick and easy

● Training models becomes more time-consuming

○ With more data

○ With larger models

● Longer training -> More epochs -> Less efficient

● Use distributed training approaches

Types of distributed training

● Data parallelism: In data parallelism, models are replicated onto

different accelerators (GPU/TPU) and data is split between them

● Model parallelism: When models are too large to fit on a single device

then they can be divided into partitions, assigning different partitions to

different accelerators

Data parallelism

Distributed training using data parallelism

Synchronous

training

● All workers train and complete updates in sync

● Supported via all-reduce architecture

Asynchronous

Training

● Each worker trains and completes updates separately

● Supported via parameter server architecture

● More efficient, but can result in lower accuracy and

slower convergence

● If you want to distribute a model:

○ Supported in high-level APIs such as Keras/Estimators

○ For more control, you can use custom training loops

Making your models distribute-aware

● Library in TensorFlow for running a computation in multiple devices

● Supports distribution strategies for high-level APIs like Keras and

custom training loops

● Convenient to use with little or no code changes

tf.distribute.Strategy

Distribution Strategies supported by tf.distribute.Strategy

● One Device Strategy

● Mirrored Strategy

● Parameter Server Strategy

● Multi-Worker Mirrored Strategy

● Central Storage Strategy

● TPU Strategy

One Device Strategy

● Single device - no distribution

● Typical usage of this strategy is testing your code before

switching to other strategies that actually distribute your code

Mirrored Strategy

● This strategy is typically used for training on one machine with multiple

GPUs

○ Creates a replica per GPU <> Variables are mirrored

○ Weight updating is done using efficient cross-device communication

algorithms (all-reduce algorithms)

● Some machines are designated as workers and others as parameter

servers

○ Parameter servers store variables so that workers can perform

computations on them

● Implements asynchronous data parallelism by default

Parameter Server Strategy

● Catastrophic failures in one worker would cause failure of

distribution strategies.

● How to enable fault tolerance in case a worker dies?

○ By restoring training state upon restart from job failure

○ Keras implementation: BackupAndRestore callback

Fault tolerance

High Performance Modeling

High-performance
Ingestion

Data at times can’t fit into memory and sometimes, CPUs are under-utilized

in compute intensive tasks like training a complex model

You should avoid these inefficiencies so that you can make the most of the

hardware available → Use input pipelines

Why input pipelines?

Local (HDD/SSD)

Remote (GCS/HDFS)

Extract Transform

Shuffling & Batching
Decompression
Augmentation
Vectorization

. . .

Load

Load transformed data
to an accelerator

tf.data: TensorFlow Input Pipeline

Extract
Step 1

Transform 1

Extract
Step 3

Transform 2

Load
1

Train 1

Load
2

Extract
Step 2

Train 2

Time

Accelerator idle

CPU Idle

Inefficient ETL process

Extract
Step 1

Transform 1

Extract
Step 2

Extract
Step 3

Transform 2

Load
1

Train 1

Transform 3

Load
2

Load
3

Extract
Step 4

Transform 4

Load
4

Transform 5

Extract
Step 5

Extract
Step 6

Transform 6

Load
5

Train 2 Train 3 Train 4

Extract
Step 7

Accelerator 100%
utilized

Disk Idle CPU Idle

Time

An improved ETL process

Without
pipelining

With
pipelining

CPU

GPU/TPU idle

Prepare 1 Prepare 2 Prepare 3 Prepare 4

Train 1

Prepare 1

idle idle

Prepare 2

idle

Prepare 3

Train 3

idle

Train 2

idle

Train 1

idleCPU

GPU/TPU

Time

Pipelining

Train 1 Train 2 Train 3

Time

How to optimize pipeline performance?

● Prefetching

● Parallelize data extraction and transformation

● Caching

● Reduce memory

benchmark(

 ArtificialDataset()

 .prefetch(tf.data.experimental.AUTOTUNE)

)

Optimize with prefetching

Prefetched

Time (s)

E
p

o
ch

Tr
ai

n
R

ea
d

O

p
en

Parallelize data extraction

● Time-to-first-byte: Prefer local storage as it takes significantly longer

to read data from remote storage

● Read throughput: Maximize the aggregate bandwidth of remote

storage by reading more files

benchmark(

 tf.data.Dataset.range(2)

 .interleave(

 ArtificialDataset,

 num_parallel_calls=tf.data.experimental.AUTOTUNE

)

)

Parallel interleave

Parallel interleave

Time (s)

E
p

o
ch

Tr
ai

n
R

ea
d

O

p
en

Parallelize data transformation

● Post data loading, the inputs may need preprocessing

● Element-wise preprocessing can be parallelized across CPU cores

● The optimal value for the level of parallelism depends on:

○ Size and shape of training data

○ Cost of the mapping transformation

○ Load the CPU is experiencing currently

● With tf.data you can use AUTOTUNE to set parallelism automatically

Parallel mapping

benchmark(

 ArtificialDataset()

 .map(

 mapped_function,

 num_parallel_calls=tf.data.AUTOTUNE

)

)

E
p

o
ch

Tr
ai

n
M

ap

R
ea

d
 O

p
en

Parallel map

Time (s)

Improve training time with caching

● In-memory: tf.data.Dataset.cache()

● Disk: tf.data.Dataset.cache(filename=...)

benchmark(

 ArtificialDataset().map(mapped_function).cache(),5

)

Caching

E
p

o
ch

Tr
ai

n
M

ap

R
ea

d

O
p

en

Cached dataset

Time (s)

Training Large Models -
The Rise of Giant Neural Nets

and Parallelism

High performance modeling

Rise of giant neural networks

● In 2014, the ImageNet winner was GoogleNet with 4 mil. parameters

and scoring a 74.8% top-1 accuracy

● In 2017, Squeeze-and-excitation networks achieved 82.7% top-1

accuracy with 145.8 mil. Parameters

36 fold increase in the number of parameters in just 3 years!

Issues training larger networks

● GPU memory only increased by factor ~ 3

● Saturated the amount of memory available in Cloud TPUs

● Need for large-scale training of giant neural networks

Overcoming memory constraints

● Strategy #1 - Gradient Accumulation

○ Split batches into mini-batches and only perform backprop after whole
batch

● Strategy #2 - Memory swap

○ Copy activations between CPU and memory, back and forth

Parallelism revisited

● Data parallelism: In data parallelism, models are replicated onto

different accelerators (GPU/TPU) and data is split between them

● Model parallelism: When models are too large to fit on a single device

then they can be divided into partitions, assigning different partitions to

different accelerators

Challenges in data parallelism

4 8 16 4 8 16 4 8 16

VGG16 ResNet50 AlexNet

C
o

m
m

u
n

ic
at

io
n

 o
ve

rh
ea

d
(%

 t
im

e)

0

100

50
K80

Titan X

V100

● Accelerators have limited memory

● Model parallelism: large networks can be trained

○ But, accelerator compute capacity is underutilized

● Data parallelism: train same model with different input data

○ But, the maximum model size an accelerator can support is limited

Challenges keeping accelerators busy

F
1

F
2

F
3

B
3

B
2

B
1

B
0

Update

Update

Update

UpdateTimeF
0

Device 3

Device 2

Device 1

Device 0

Update

Update

Update

UpdateB
0.0

B
0.1

B
1,3

B
1,2

B
1,1

B
1,0

B
2.0B

2,1
B

2.2
B

2,3

B
3,0

B
3,1

B
3,2

B
3,3

F
3,0

F
2,3F

2,2
F

2,1
F

2,0

F
1,3

F
1,2F

1,1F
1,0

Bubble
B

0,2
B

0,3
F

0,1
F

0,0 F
0,2

F
0,3

Device 3

Device 2

Device 1

Device 0

F
3,1

F
3,2

F
3,3

Pipeline parallelism

Pipeline parallelism

● Integrates both data and model parallelism:

○ Divide mini-batch data into micro-batches

○ Different workers work on different micro-batches in parallel

○ Allow ML models to have significantly more parameters

GPipe - Key features

● Open-source TensorFlow library (using Lingvo)

● Inserts communication primitives at the partition boundaries

● Automatic parallelism to reduce memory consumption

● Gradient accumulation across micro-batches, so that model quality is

preserved

● Partitioning is heuristic-based

AmoebaNEt-D (4,512)
Sp

ee
d

u
p

4

3

2

1

0
naive-2 pipeline-2 pipeline-4 pipeline-8

GPipe Results

Knowledge Distillation

Teacher and Student
Networks

Sophisticated models and their problems

● Larger sophisticated models become complex

● Complex models learn complex tasks

● Can we express this learning more efficiently?

Is it possible to ‘distill’ or concentrate this complexity into smaller

networks?

GoogLeNet

● Duplicate the performance of a

complex model in a simpler model

Knowledge distillation

Loss

Teacher

Student 1 Student 2

● Idea: Create a simple ‘student’
model that learns from a complex

‘teacher’ model

Knowledge Distillation

Knowledge Distillation
Techniques

Teacher and student

● Training objectives of the models vary

● Teacher (normal training)

○ maximizes the actual metric

● Student (knowledge transfer)

○ matches p-distribution of the teacher’s predictions to form ‘soft targets’

○ ‘Soft targets’ tell us about the knowledge learned by the teacher

Dar w ge

Transferring “dark knowledge” to the student

● Improve softness of the teacher’s

distribution with ‘softmax

temperature’ (T)

● As T grows, you get more insight

about which classes the teacher finds

similar to the predicted one

Techniques

● Approach #1: Weigh objectives (student and teacher) and combine

during backprop

● Approach #2: Compare distributions of the predictions (student and

teacher) using KL divergence

KL divergence

t - logits from the teacher
s - logits of the student

Input
x

Layer
1

Layer
2

Layer
m

softmax (T=t)

Teacher model

Layer
1

Layer
m

softmax (T=t)

Student (distilled) model

softmax (T=1)

Layer
2

...

...

labels

predictions

distillation loss

predictions

soft

hard

hard label y

student loss

Ground truth

How knowledge transfer takes place

Model Accuracy Word Error Rate (WER)

Baseline 58.9% 10.9%

10x Ensemble 61.1% 10.7%

Distilled Single Model 60.8% 10.7%

First quantitative results of distillation

DistilBERT

Knowledge Distillation

Case Study - How to Distill
Knowledge for a Q&A Task

Two-stage multi-teacher distillation for Q & A

Distillation
task 1

Distillation
task 2

Distillation
task N

Q&A unsupervised large corpus
(soft labels)

Student model

Q&A

Golden
task

Distillation
task 2

Distillation
task N

Task specific corpus
(golden + soft labels)

Enhanced Student model

RTE

Distillation
task 2

Distillation
task N

Task specific corpus
(golden + soft labels)

Enhanced Student model

Q&A

Golden
task

Distillation
task 2

Distillation
task N

Task specific corpus
(golden + soft labels)

Enhanced Student model

MNLI

TKD MKD TMKD

DeepQA MNLI SNLI QNLI RTE

40

50

60

70

80

90

40

50

60

70

80

90

40

50

60

70

80

90

40

50

60

70

80

90

40

50

60

70

80

90

80
78

80.4

72.3 72
73.9

78.2 79 79.5

86

78

87

67

60

67

Impact of two-stage knowledge distillation

Make EfficientNets robust to noise with distillation

Replace teacher with student

Train noised student model
using labeled and
pseudo-labeled data

● Data augmentation
● Dropout
● Stochastic depth

Assign pseudo-labels to
unlabeled data

Train teacher
on labeled data

Results of noisy student training

86

84

82

80

78

76

74

0 40 80 120 160
of parameters (in millions)

Im
ag

eN
et

 T
o

p
-1

 A
cc

u
ra

cy
 %

NoisyStudent EfficentNet-B7

 EfficentNet-B7

AmoebaNet-C

SENet

