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High Performance Modeling

Welcome



Distributed Training

High Performance Modeling



Rise in computational requirements

● At first, training models is quick and easy

● Training models becomes more time-consuming

○ With more data

○ With larger models

● Longer training -> More epochs -> Less efficient

● Use distributed training approaches 



Types of distributed training

● Data parallelism: In data parallelism, models are replicated onto 

different accelerators (GPU/TPU) and data is split between them

● Model parallelism: When models are too large to fit on a single device 

then they can be divided into partitions, assigning different partitions to 

different accelerators



Data parallelism 



Distributed training using data parallelism

Synchronous 

training

● All workers train and complete updates in sync

● Supported via all-reduce architecture

Asynchronous 

Training

● Each worker trains and completes updates separately

● Supported via parameter server architecture

● More efficient, but can result in lower accuracy and 

slower convergence



● If you want to distribute a model:

○ Supported in high-level APIs such as Keras/Estimators

○ For more control, you can use custom training loops

Making your models distribute-aware



● Library in TensorFlow for running a computation in multiple devices

● Supports distribution strategies for high-level APIs like Keras and 

custom training loops

● Convenient to use with little or no code changes

tf.distribute.Strategy



Distribution Strategies supported by tf.distribute.Strategy

● One Device Strategy

● Mirrored Strategy

● Parameter Server Strategy

● Multi-Worker Mirrored Strategy

● Central Storage Strategy

● TPU Strategy



One Device Strategy

● Single device - no distribution

● Typical usage of this strategy is testing your code before 

switching to other strategies that actually distribute your code



Mirrored Strategy

● This strategy is typically used for training on one machine with multiple 

GPUs

○ Creates a replica per GPU <> Variables are mirrored

○ Weight updating is done using efficient cross-device communication 

algorithms (all-reduce algorithms)



● Some machines are designated as workers and others as parameter 

servers

○ Parameter servers store variables so that workers can perform 

computations on them

● Implements asynchronous data parallelism by default 

Parameter Server Strategy



● Catastrophic failures in one worker would cause failure of 

distribution strategies. 

● How to enable fault tolerance in case a worker dies?

○ By restoring training state upon restart from job failure

○ Keras implementation: BackupAndRestore callback

Fault tolerance



High Performance Modeling

High-performance 
Ingestion



Data at times can’t fit into memory and sometimes, CPUs are under-utilized 

in compute intensive tasks like training a complex model

You should avoid these inefficiencies so that you can make the most of the 

hardware available → Use input pipelines 

Why input pipelines?



Local (HDD/SSD)

Remote (GCS/HDFS)

Extract Transform

Shuffling & Batching 
Decompression
Augmentation
Vectorization

. . .

Load

Load transformed data 
to an accelerator

tf.data: TensorFlow Input Pipeline
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pipelining
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How to optimize pipeline performance?

● Prefetching

● Parallelize data extraction and transformation

● Caching

● Reduce memory



benchmark(

    ArtificialDataset()

    .prefetch(tf.data.experimental.AUTOTUNE)

)

Optimize with prefetching
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Parallelize data extraction

● Time-to-first-byte: Prefer local storage as it takes significantly longer 

to read data from remote storage

● Read throughput: Maximize the aggregate bandwidth of remote 

storage by reading more files



benchmark(

    tf.data.Dataset.range(2)

    .interleave(

        ArtificialDataset,

        num_parallel_calls=tf.data.experimental.AUTOTUNE

    )

)

Parallel interleave
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Parallelize data transformation

● Post data loading, the inputs may need preprocessing

● Element-wise preprocessing can be parallelized across CPU cores

● The optimal value for the level of parallelism depends on:

○ Size and shape of training data

○ Cost of the mapping transformation

○ Load the CPU is experiencing currently

● With tf.data you can use AUTOTUNE to set parallelism automatically



Parallel mapping

benchmark(

    ArtificialDataset()

    .map(

        mapped_function,

        num_parallel_calls=tf.data.AUTOTUNE

    )

)
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Improve training time with caching

● In-memory: tf.data.Dataset.cache()

● Disk: tf.data.Dataset.cache(filename=...)



benchmark(

    ArtificialDataset().map(mapped_function).cache(),5

)
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Training Large Models -
The Rise of Giant Neural Nets 

and Parallelism

High performance modeling



Rise of giant neural networks

● In 2014, the ImageNet winner was GoogleNet with 4 mil. parameters 

and scoring a 74.8% top-1 accuracy

● In 2017, Squeeze-and-excitation networks achieved 82.7% top-1 

accuracy with 145.8 mil. Parameters

36 fold increase in the number of parameters in just 3 years!



Issues training larger networks

● GPU memory only increased by factor ~ 3

● Saturated the amount of memory available in Cloud TPUs

● Need for large-scale training of giant neural networks



Overcoming memory constraints

● Strategy #1 - Gradient Accumulation

○ Split batches into mini-batches and only perform backprop after whole 
batch

● Strategy #2 - Memory swap 

○ Copy activations between CPU and memory, back and forth



Parallelism revisited 

● Data parallelism: In data parallelism, models are replicated onto 

different accelerators (GPU/TPU) and data is split between them

● Model parallelism: When models are too large to fit on a single device 

then they can be divided into partitions, assigning different partitions to 

different accelerators



Challenges in data parallelism
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● Accelerators have limited memory

● Model parallelism: large networks can be trained

○ But, accelerator compute capacity is underutilized

● Data parallelism: train same model with different input data

○ But, the maximum model size an accelerator can support is limited

Challenges keeping accelerators busy
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Pipeline parallelism

● Integrates both data and model parallelism:

○ Divide mini-batch data into micro-batches

○ Different workers work on different micro-batches in parallel

○ Allow ML models to have significantly more parameters



GPipe - Key features

● Open-source TensorFlow library (using Lingvo)

● Inserts communication primitives at the partition boundaries

● Automatic parallelism to reduce memory consumption

● Gradient accumulation across micro-batches, so that model quality is 

preserved

● Partitioning is heuristic-based
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Knowledge Distillation

Teacher and Student 
Networks



Sophisticated models and their problems

● Larger sophisticated models become complex

● Complex models learn complex tasks

● Can we express this learning more efficiently?

Is it possible to ‘distill’ or concentrate this complexity into smaller 

networks?



GoogLeNet



● Duplicate the performance of a 

complex model in a simpler model

Knowledge distillation

Loss

Teacher

Student 1 Student 2

● Idea: Create a simple ‘student’ 
model that learns from a complex 

‘teacher’ model



Knowledge Distillation

Knowledge Distillation 
Techniques



Teacher and student

● Training objectives of the models vary

● Teacher (normal training)

○ maximizes the actual metric

● Student (knowledge transfer)

○ matches p-distribution of the teacher’s predictions to form ‘soft targets’ 

○ ‘Soft targets’ tell us about the knowledge learned by the teacher



Dar  w ge



Transferring  “dark knowledge” to the student

● Improve softness of the teacher’s 

distribution with ‘softmax 

temperature’ (T)

● As T grows, you get more insight 

about which classes the teacher finds 

similar to the predicted one 



Techniques

● Approach #1: Weigh objectives (student and teacher) and combine 

during backprop

● Approach #2: Compare distributions of the predictions (student and 

teacher) using KL divergence



KL divergence



t - logits from the teacher
s - logits of the student
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How knowledge transfer takes place



Model Accuracy Word Error Rate (WER)

Baseline 58.9% 10.9%

10x Ensemble 61.1% 10.7%

Distilled Single Model 60.8% 10.7%

First quantitative results of distillation



DistilBERT



Knowledge Distillation

Case Study - How to Distill 
Knowledge for a Q&A Task



Two-stage multi-teacher distillation for Q & A

Distillation 
task 1

Distillation 
task 2

Distillation 
task N

Q&A unsupervised large corpus 
(soft labels)

Student model

Q&A

Golden 
task

Distillation 
task 2

Distillation 
task N

Task specific corpus
(golden + soft labels)

Enhanced Student model

RTE
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Enhanced Student model

MNLI



TKD MKD TMKD
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Make EfficientNets robust to noise with distillation

Replace teacher with student

Train noised student model 
using labeled and 
pseudo-labeled data

● Data augmentation
● Dropout
● Stochastic depth

Assign pseudo-labels to 
unlabeled data

Train teacher 
on labeled data



Results of noisy student training

86

84

82

80

78

76

74

0 40 80 120 160
# of parameters (in millions)

Im
ag

eN
et

 T
o

p
-1

 A
cc

u
ra

cy
 %

NoisyStudent EfficentNet-B7

 EfficentNet-B7

AmoebaNet-C

SENet


