Copyright Notice

These slides are distributed under the Creative Commons License.

<u>DeepLearning.Al</u> makes these slides available for educational purposes. You may not use or distribute these slides for commercial purposes. You may make copies of these slides and use or distribute them for educational purposes as long as you cite <u>DeepLearning.Al</u> as the source of the slides.

For the rest of the details of the license, see <u>https://creativecommons.org/licenses/by-sa/2.0/legalcode</u>

DeepLearning.AI

Model Resource Management Techniques

Welcome

Dimensionality Reduction

Dimensionality Effect on Performance

High-dimensional data

Before. .. when it was all about data mining
Domain experts selected features
Designed feature transforms
Small number of more relevant features were enough

Now ... data science is about integrating everything
Data generation and storage is less of a problem
Squeeze out the best from data
More high-dimensional data having more features

A note about neural networks

- Yes, neural networks will perform a kind of automatic feature selection
- However, that's not as efficient as a well-designed dataset and model
 - Much of the model can be largely "shut off" to ignore unwanted features
 - Even unused parts of the consume space and compute resources
 - Unwanted features can still introduce unwanted noise
 - Each feature requires infrastructure to collect, store, and manage

High-dimensional spaces

DeepLearning.AI

Word embedding - An example

Auto Embedding Weight Matrix

DeepLearning.AI

Initialization and loading the dataset

```
import tensorflow as tf
from tensorflow import keras
import numpy as np
from keras.datasets import reuters
from keras.preprocessing import sequence
num words = 1000
```

Further preprocessing

```
from keras.utils import np_utils
reuters_train_y = np_utils.to_categorical(reuters_train_y, 46)
reuters_test_y = np_utils.to_categorical(reuters_test_y, 46)
```

Using all dimensions

```
from tensorflow.keras import layers
model2 = tf.keras.Sequential(
     layers.Embedding(num_words, 1000, input_length= 20),
      layers.Flatten(),
      layers.Dense(256),
      layers.Dropout(0.25),
      layers.Activation('relu'),
      layers.Dense(46),
      layers.Activation('softmax')
    ])
```

```
model.compile(loss="categorical_crossentropy", optimizer="rmsprop",
metrics=['accuracy'])
```

Example with a higher number of dimensions

DeepLearning.Al

Word embeddings: 6 dimensions

```
from tensorflow.keras import layers
model = tf.keras.Sequential(
```

```
layers.Embedding(num_words, 6, input_length= 20),
layers.Flatten(),
layers.Dense(256),
layers.Dropout(0.25),
layers.Activation('relu'),
layers.Dense(46),
layers.Activation('softmax')
```

Word embeddings: fourth root of the size of the vocab

DeepLearning.AI

Dimensionality Reduction

Curse of Dimensionality

Many ML methods use the distance measure

DeepLearning.Al

Why is high-dimensional data a problem?

- More dimensions \rightarrow more features
- Risk of overfitting our models
- Distances grow more and more alike
- No clear distinction between clustered objects
- Concentration phenomenon for Euclidean distance

Curse of dimensionality

"As we add more dimensions we also increase the processing power we need to train the model and make predictions, as well as the amount of training data required"

Badreesh Shetty

Why are more features bad?

- Redundant / irrelevant features
- More noise added than signal
- Hard to interpret and visualize
- Hard to store and process data

The performance of algorithms ~ the number of dimensions

DeepLearning.AI

Adding dimensions increases feature space volume

1-D

1	2	3	4	5
---	---	---	---	---

Z-D

(1, 1)	(1, 2)	(1, 3)	(1, 4)	(1, 5)
(2, 1)	(2, 2)	(2, 3)	(2, 4)	(2, 5)
(3, 1)	(3, 2)	(3, 3)	(3, 4)	(3, 5)
(4, 1)	(4, 2)	(4, 3)	(4, 4)	(4, 5)
(5, 1)	(5, 2)	(5, 3)	(5, 4)	(5, 5)

Curse of dimensionality in the distance function

Euclidean distance

$$d_{ij} = \sqrt{\sum_{k=1}^{n} (x_{ik} - x_{jk})^2}$$

- New dimensions add non-negative terms to the sum
- Distance increases with the number of dimensions
- For a given number of examples, the feature space becomes increasingly sparse

Increasing sparsity with higher dimensions

DeepLearning.AI

The Hughes effect

The more the features, the larger the hypothesis space

The lower the hypothesis space

- the easier it is to find the correct hypothesis
- the less examples you need

Dimensionality Reduction

Curse of Dimensionality: An example

How dimensionality impacts in other ways

- Runtime and system memory requirements
- Solutions take longer to reach global optima
- More dimensions raise the likelihood of correlated features

More features require more training data

- More features aren't better if they don't add predictive information
- Number of training instances needed increases exponentially with each added feature
- Reduces real-world usefulness of models

Model #1 (missing a single feature)

sex:InputLayer	 category_encoding_6:CategoryEncoding 		category_enconding_5:CategoryEncoding <a>ca:InputLayer
cp:InputLayer	 category_encoding_1:CategoryEncoding 	M/	normalization:Normalization - age:InputLayer
fbs:InputLayer	 category_encoding_2:CategoryEncoding 	$\operatorname{K}(//$	normalization_1:Normalization
restecg : InputLayer	 category_encoding_3:CategoryEncoding 	$\mathbb{K} / / / / / / / / / / / / / / / / / / /$	normalization_2:Normalization
exang:InputLayer	category_encoding_4:CategoryEncoding	\mathbb{R}	normalization_3:Normalization <a>thalach:InputLayer
			normalization_4:Normalization oldpeak:InputLayer
		¥	
slope:InputLayer	normalization_5:Normalization concat	enate: Concate	nate - dense: Dense - dropout: dropout - dense_1: Dense

DeepLearning.Al

Model #2 (adds a new feature)

DeepLearning.Al

Comparing the two models' trainable variables

from tensorflow.python.keras.utils.layer_utils import count_params

Number of training parameters in Model #1

>>> count_params(model_1.trainable_variables)

833

Number of training parameters in Model #2 (with an added feature)
>>> count_params(model_1.trainable_variables)
1057

DeepLearning.AI

What do ML models need?

- No hard and fast rule on how many features are required
- Number of features to be used vary depending on
- Prefer uncorrelated data containing information to produce correct results

Dimensionality Reduction

Manual Dimensionality Reduction

Increasing predictive performance

- Features must have information to produce correct results
- Derive features from inherent features
- Extract and recombine to create new features

Feature explosion

Initial features

pixels, contours, textures, etc.

MAN

ticks, trends, reversals, etc.

dna, marker sequences, genes, etc.

words, grammatical classes and relations, etc.

Combining features

- Number of features grows very quickly
- Reduce dimensionality

Why reduce dimensionality?

Consistency

Visualization

Major techniques for dimensionality reduction

Engineering

Selection

Feature Engineering

Need for manually crafting features

Certainly provides food for thought

Engineer features

- Tabular aggregate, combine, decompose
- Text-extract context indicators
- Image-prescribe filters for relevant structures

It's an iterative process

Come up with ideas to construct "better" features

Devising features to reduce dimensionality

Select the right features to maximize predictiveness

Evaluate models using chosen features

DeepLearning.Al

Dimensionality Reduction

Manual Dimensionality Reduction: case study

Taxi Fare dataset

```
CSV COLUMNS = [
    'fare amount',
    'pickup datetime', 'pickup longitude', 'pickup latitude',
    'Dropoff longitude', 'dropoff latitude',
    'passenger count', 'key',
LABEL COLUMN = 'fare amount'
STRING COLS = ['pickup datetime']
NUMERIC COLS = ['pickup longitude', 'pickup latitude',
                'dropoff longitude', 'dropoff latitude',
                'passenger count']
DEFAULTS = [[0.0], ['na'], [0.0], [0.0], [0.0], [0.0], [0.0], ['na']]
```

DAYS = ['Sun', 'Mon', 'Tue', 'Wed', 'Thu', 'Fri', 'Sat']

Build the model in Keras

Build a baseline model using raw features

```
from tensorflow.keras import layers
from tensorflow.keras.metrics import RootMeanSquared as RMSE
```

dnn_inputs = layers.DenseFeatures(feature_columns.values())(inputs)

```
h1 = layers.Dense(32, activation='relu', name='h1')(dnn_inputs)
h2 = layers.Dense(8, activation='relu', name='h2')(h1)
```

Train the model

Increasing model performance with Feature Engineering

- Carefully craft features for the data types
 - Temporal (pickup date & time)
 - Geographical (latitude and longitude)

Handling temporal features

```
def parse_datetime(s):
    if type(s) is not str:
        s = s.numpy().decode('utf-8')
    return datetime.datetime.strptime(s, "%Y-%m-%d %H:%M:%S %Z")
def get_dayofweek(s):
    ts = parse datetime(s)
    return DAYS[ts.weekday()]
@tf.function
def dayofweek(ts_in):
    return tf.map fn(
        lambda s: tf.py_function(get_dayofweek, inp=[s],
                  Tout=tf.string),
        ts_in)
```

Geolocational features

def euclidean(params):
 lon1, lat1, lon2, lat2 = params
 londiff = lon2 - lon1
 latdiff = lat2 - lat1
 return tf.sqrt(londiff * londiff + latdiff * latdiff)

Scaling latitude and longitude

def scale_longitude(lon_column):
 return (lon_column + 78)/8.

def scale_latitude(lat_column):
 return (lat_column - 37)/8.

Preparing the transformations

```
def transform(inputs, numeric cols, string cols, nbuckets):
    . . .
    feature columns = {
        colname: tf.feature column.numeric column(colname)
        for colname in numeric cols
  for lon_col in ['pickup_longitude', 'dropoff_longitude']:
        transformed[lon_col] = layers.Lambda(scale_longitude,
            ...)(inputs[lon col])
  for lat col in ['pickup latitude', 'dropoff latitude']:
        transformed[lat_col] = layers.Lambda(
            scale latitude,
            ...)(inputs[lat col])
```

Computing the Euclidean distance

```
def transform(inputs, numeric cols, string cols, nbuckets):
    • • •
    transformed['euclidean'] = layers.Lambda(
        euclidean,
        name='euclidean')([inputs['pickup_longitude'],
                           inputs['pickup latitude'],
                           inputs['dropoff_longitude'],
                           inputs['dropoff latitude']])
    feature columns['euclidean'] = fc.numeric column('euclidean')
     • • •
```

Bucketizing and feature crossing

```
def transform(inputs, numeric cols, string cols, nbuckets):
    • • •
    latbuckets = np.linspace(0, 1, nbuckets).tolist()
    lonbuckets = ... # Similarly for longitude
    b plat = fc.bucketized column(
        feature columns['pickup latitude'], latbuckets)
    b dlat = # Bucketize 'dropoff latitude'
    b plon = # Bucketize 'pickup longitude'
    b dlon = # Bucketize 'dropoff longitude'
```

Bucketizing and feature crossing

```
ploc = fc.crossed_column([b_plat, b_plon], nbuckets * nbuckets)
dloc = # Feature cross 'b_dlat' and 'b_dlon'
pd_pair = fc.crossed_column([ploc, dloc], nbuckets ** 4)
```

feature_columns['pickup_and_dropoff'] = fc.embedding_column(pd_pair,
100)

Build a model with the engineered features

Train the new feature engineered model

Improved model rmse

Dimensionality Reduction

Algorithmic Dimensionality Reduction

Linear dimensionality reduction

- Linearly project n-dimensional data onto a k-dimensional subspace (k < n, often k << n)
- There are infinitely many k-dimensional subspaces we can project the data onto
- Which one should we choose?

Projecting onto a line

Best k-dimensional subspace for projection

Classification: maximize separation among classes

Example: Linear discriminant analysis (LDA)

Regression: maximize correlation between projected data and response variable **Example:** Partial least squares (PLS)

Unsupervised: retain as much data variance as possible

Example: Principal component analysis (PCA)

Dimensionality Reduction

Principal Component Analysis

Principal component analysis (PCA)

- PCA is a minimization of the orthogonal distance
- Widely used method for unsupervised & linear dimensionality reduction
- Accounts for variance of data in as few dimensions as possible using linear projections

Principal components (PCs)

- PCs maximize the variance of projections
- PCs are orthogonal
- Gives the best axis to project
- Goal of PCA: Minimize total squared reconstruction error

2-D data

PCA Algorithm - First Principal Component

Step 1

Find a line, such that when the data is projected onto that line, it has the maximum variance

PCA Algorithm - Second Principal Component

Find a second line, orthogonal to the first, that has maximum projected variance

DeepLearning.Al

Step 2

PCA Algorithm

Step 3

Repeat until we have k orthogonal lines

Applying PCA on Iris

Plot the explained variance

tot = sum(pca.e_vals_)
var_exp = [(i / tot) * 100 for i in sorted(pca.e_vals_, reverse=True)]
cum_var_exp = np.cumsum(var_exp)

PCA factor loadings

PCA in scikit-learn

from sklearn.preprocessing import StandardScaler
from sklearn.decomposition import PCA
from sklearn import datasets

Load the data
digits = datasets.load_digits()

Standardize the feature matrix

X = StandardScaler().fit_transform(digits.data)

PCA in scikit-learn

```
# Create a PCA that will retain 99% of the variance
pca = PCA(n_components=0.99, whiten=True)
```

```
# Conduct PCA
X_pca = pca.fit_transform(X)
```

When to use PCA?

Dimensionality Reduction

Other Techniques

More dimensionality reduction algorithms

Singular value decomposition (SVD)

- SVD decomposes non-square matrices
- Useful for sparse matrices as produced by TF-IDF
- Removes redundant features from the dataset

Independent Components Analysis (ICA)

- PCA seeks directions in feature space that minimize reconstruction error
- ICA seeks directions that are most statistically independent
- ICA addresses higher order dependence
How does ICA work?

• Assume there exists independent signals:

 $S = [s_1(t), s_2(t), \dots, s_N(t)]$

- Linear combinations of signals: Y(t) = A S(t)
 - Both A and S are unknown
 - A mixing matrix
- Goal of ICA: recover original signals, *S*(*t*) from *Y*(*t*)

Comparing PCA and ICA

	РСА	ICA
Removes correlations	~	1
Removes higher order dependence		1
All components treated fairly?		1
Orthogonality	1	

Non-negative Matrix Factorization (NMF)

- NMF models are interpretable and easier to understand
- NMF requires the sample features to be non-negative

Non-negative components - NMF - Train time 0.1s

Quantization & Pruning

Mobile, IoT, and Similar Use Cases

Trends in adoption of smart devices

Factors driving this trend

- Demands move ML capability from cloud to on-device
- Cost-effectiveness
- Compliance with privacy regulations

Online ML inference

- To generate real-time predictions you can:
 - Host the model on a server
 - Embed the model in the device
- Is it faster on a server, or on-device?
- Mobile processing limitations?

Mobile inference

Inference on the cloud/server

Pros

- Lots of compute capacity
- Scalable hardware
- Model complexity handled by the server
- Easy to add new features and update the model
- Low latency and batch prediction

Cons

• Timely inference is needed

Mobile inference

On-device Inference

Pro

- Improved speed
- Performance
- Network connectivity
- No to-and-fro communication needed

Cons

- Less capacity
- Tight resource constraints

Model deployment

Options	On-device inference	On-device personalization	On-device training	Cloud-based web service	Pretrained models	Custom models
ML Kit	1	1		1	<i>√</i>	\checkmark
Core ML	1	1	1		1	\checkmark
TensorFlow Lite	1	1	1		1	1

* Also supported in TFX

Quantization & Pruning

Benefits and Process of Quantization

Quantization

Why quantize neural networks?

- Neural networks have many parameters and take up space
- Shrinking model file size
- Reduce computational resources
- Make models run faster and use less power with low-precision

MobileNets: Latency vs Accuracy trade-off

Benefits of quantization

- Faster compute
- Low memory bandwidth
- Low power
- Integer operations supported across CPU/DSP/NPUs

The quantization process

What parts of the model are affected?

- Static values (parameters)
- Dynamic values (activations)
- Computation (transformations)

Trade-offs

- Optimizations impact model accuracy
 - Difficult to predict ahead of time
- In rare cases, models may actually gain some accuracy
- Undefined effects on ML interpretability

Choose the best model for the task

Quantization & Pruning

Post Training Quantization

Post-training quantization

- Reduced precision representation
- Incur small loss in model accuracy
- Joint optimization for model and latency

Post-training quantization

Technique	Benefits
Dynamic range quantization	4x smaller, 2x-3x speedup
Full integer quantization	4x smaller, 3x+ speedup
float16 quantization	2x smaller, GPU acceleration


```
import tensorflow as tf
```

converter = tf.lite.TFLiteConverter.from_saved_model(saved_model_dir)

converter.optimizations = [tf.lite.Optimize.OPTIMIZE_FOR_SIZE]

tflite_quant_model = converter.convert()

Post-training integer quantization

Model accuracy

- Small accuracy loss incurred (mostly for smaller networks)
- Use the benchmarking tools to evaluate model accuracy
- If the loss of accuracy drop is not within acceptable limits, consider using quantization-aware training

Quantization & Pruning

Quantization Aware Training

Quantization-aware training (QAT)

- Inserts fake quantization (FQ) nodes in the forward pass
- Rewrites the graph to emulate quantized inference
- Reduces the loss of accuracy due to quantization
- Resulting model contains all data to be quantized according to spec

Quantization-aware training (QAT)

Adding the quantization emulation operations

Adding the quantization emulation operations

QAT on entire model

import tensorflow_model_optimization as tfmot

```
model = tf.keras.Sequential([
    ...
])
# Quantize the entire model.
quantized_model = tfmot.quantization.keras.quantize_model(model)
# Continue with training as usual.
guantized model.compile(...)
```

```
quantized_model.fit(...)
```

Quantize part(s) of a model

```
import tensorflow_model_optimization as tfmot
quantize_annotate_layer = tfmot.quantization.keras.quantize_annotate_layer
model = tf.keras.Sequential([
```

```
# Only annotated layers will be quantized.
quantize_annotate_layer(Conv2D()),
quantize_annotate_layer(ReLU()),
Dense(),
...
```

```
])
```

```
# Quantize the model.
```

quantized_model = tfmot.quantization.keras.quantize_apply(model)

Quantize custom Keras layer

```
quantize_annotate_layer =
tfmot.quantization.keras.quantize_annotate_layer
quantize_annotate_model =
tfmot.quantization.keras.quantize_annotate_model
quantize_scope = tfmot.quantization.keras.quantize_scope
```

tf.keras.layers.Flatten()

]))

Quantize custom Keras layer

`quantize_apply` requires mentioning `DefaultDenseQuantizeConfig` with `quantize_scope`

```
with quantize_scope(
```

{'DefaultDenseQuantizeConfig': DefaultDenseQuantizeConfig,

```
'CustomLayer': CustomLayer}):
```

Use `quantize_apply` to actually make the model quantization aware.

quant_aware_model = tfmot.quantization.keras.quantize_apply(model)

Model Optimization Results - Accuracy

Model	Top-1 Accuracy (Original)	Top-1 Accuracy (Post Training Quantized)	Top-1 Accuracy (Quantization Aware Training)
Mobilenet-v1-1-224	0.709	0.657	0.70
Mobilenet-v2-1-224	0.719	0.637	0.709
Inception_v3	0.78	0.772	0.775
Resnet_v2_101	0.770	0.768	N/A

Model Optimization Results - Latency

Model	Latency (Original) (ms)	Latency (Post Training Quantized) (ms)	Latency (Quantization Aware Training) (ms)
Mobilenet-v1-1-224	124	112	64
Mobilenet-v2-1-224	89	98	54
Inception_v3	1130	845	543
Resnet_v2_101	3973	2868	N/A
Model Optimization Results

Model	Size (Original) (MB)	Size (Optimized) (MB)		
Mobilenet-v1-1-224	16.9	4.3		
Mobilenet-v2-1-224	14	3.6		
Inception_v3	95.7	23.9		
Resnet_v2_101	178.3	44.9		

Quantization & Pruning

Pruning

Connection pruning

Before pruning

After pruning

DeepLearning.Al

Model sparsity

Origins of weight pruning

DeepLearning.Al

The Lottery Ticket Hypothesis

$$p = \frac{1}{3000000}$$
$$\bar{p} = 1 - p$$
$$p_n = 1 - (1 - p)^n$$

DeepLearning.Al

Finding Sparse Neural Networks

"A randomly-initialized, dense neural network contains a subnetwork that is initialized such that — when trained in isolation — it can match the test accuracy of the original network after training for at most the same number of iterations"

Jonathan Frankle and Michael Carbin

Pruning research is evolving

- The new method didn't perform well at large scale
- The new method failed to identify the randomly initialized winners
- It's an active area of research

Eliminate connections based on their magnitude

 3	2	7	4	0	2	0	4	0	0	7	4
9	6	3	8	0	6	3	0	9	6	0	0
4	4	1	3	4	0	0	3	0	0	1	3
2	3	2	5	0	3	0	5	2	3	0	0

Tensors with no sparsity (left), sparsity in blocks of 1x1 (center), and the sparsity in blocks 1x2 (right)

Apply sparsity with a pruning routine

Example of sparsity ramp-up function with a schedule to start pruning from step 0 until step 100, and a final target sparsity of 90%.

Sparsity increases with training

What's special about pruning?

- Better storage and/or transmission
- Gain speedups in CPU and some ML accelerators
- Can be used in tandem with quantization to get additional benefits
- Unlock performance improvements

Pruning with TF Model Optimization Toolkit

DeepLearning.AI

Pruning with Keras

```
import tensorflow model optimization as tfmot
model = build_your_model()
pruning schedule = tfmot.sparsity.keras.PolynomialDecay(
                       initial sparsity=0.50, final sparsity=0.80,
                       begin step=2000, end step=4000)
model for pruning = tfmot.sparsity.keras.prune low magnitude(
                       model,
```

pruning_schedule=pruning_schedule)

• • •

model_for_pruning.fit(...)

DeepLearning.AI

Results across different models & tasks

Model	Non-sparse Top-1 acc.	Sparse acc.	Sparsity	Model	Non-sparse BLEU	Sparse BLEU	Sparsity
Inception V3	78.1%	78.0%	50%			26.86	80%
			GNMT 75% 87.5%	26.77	26.52	85%	
		76.1%				26.19	90%
		74.6%		GNMT DE-EN	29.47	29.50	80%
Mobilenet V1 224	71.04%	70.84%	50%			29.24	85%
						28.81	90%