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Model Resource 
Management Techniques 

Welcome



Dimensionality Reduction

Dimensionality Effect on 
Performance



High-dimensional data

Before. .. when it 
was all about data 
mining

● Domain experts selected features

● Designed feature transforms

● Small number of more relevant features were enough

Now … data science 
is about integrating 
everything

● Data generation and storage is less of a problem

● Squeeze out the best from data

● More high-dimensional data having more features



A note about neural networks

● Yes, neural networks will perform a kind of automatic feature selection

● However, that’s not as efficient as a well-designed dataset and model

○ Much of the model can be largely “shut off” to ignore unwanted 

features

○ Even unused parts of the consume space and compute resources

○ Unwanted features can still introduce unwanted noise

○ Each feature requires infrastructure to collect, store, and manage



High-dimensional spaces



Word embedding - An example
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Initialization and loading the dataset

import tensorflow as tf

from tensorflow import keras

import numpy as np

from keras.datasets import reuters

from keras.preprocessing import sequence

num_words = 1000

(reuters_train_x, reuters_train_y), (reuters_test_x, reuters_test_y) =

                     tf.keras.datasets.reuters.load_data(num_words=num_words)

n_labels = np.unique(reuters_train_y).shape[0]



Further preprocessing

from keras.utils import np_utils

reuters_train_y = np_utils.to_categorical(reuters_train_y, 46)

reuters_test_y = np_utils.to_categorical(reuters_test_y, 46)

reuters_train_x =

     tf.keras.preprocessing.sequence.pad_sequences(reuters_train_x, maxlen=20)

reuters_test_x = tf.keras.preprocessing.sequence.pad_sequences(reuters_test_x,

                 maxlen=20)



Using all dimensions

from tensorflow.keras import layers

model2 = tf.keras.Sequential(

    [

 layers.Embedding(num_words, 1000, input_length= 20),

      layers.Flatten(),

      layers.Dense(256),

      layers.Dropout(0.25),

      layers.Activation('relu'),

      layers.Dense(46),

      layers.Activation('softmax')

    ])



Model compilation and training

model.compile(loss="categorical_crossentropy", optimizer="rmsprop", 

metrics=['accuracy'])

model_1 = model.fit(reuters_train_x, reuters_train_y,

                    validation_data=(reuters_test_x , reuters_test_y),

                    batch_size=128, epochs=20, verbose=0)



Example with a higher number of dimensions
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Word embeddings: 6 dimensions

from tensorflow.keras import layers

model = tf.keras.Sequential(

    [

      layers.Embedding(num_words, 6, input_length= 20),

      layers.Flatten(),

      layers.Dense(256),

      layers.Dropout(0.25),

      layers.Activation('relu'),

      layers.Dense(46),

      layers.Activation('softmax')

    ])

     



Word embeddings: fourth root of the size of the vocab
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Dimensionality Reduction

Curse of Dimensionality



 ML 
methods

k-Nearest 
Neighbours

Support Vector 
Machines 

 Distance 
measure

e.g., Euclidean 
Distance

Recommendation 
systems

Many ML methods use the distance measure



● More dimensions → more features

● Risk of overfitting our models

● Distances grow more and more alike

● No clear distinction between clustered objects

● Concentration phenomenon for Euclidean distance

Why is high-dimensional data a problem?



Curse of dimensionality

“As we add more dimensions we also increase the processing power we 

need to train the model and make predictions, as well as the amount of 

training data required”

Badreesh Shetty



Why are more features bad?

● Redundant / irrelevant features

● More noise added than signal

● Hard to interpret and visualize

● Hard to store and process data



The performance of algorithms ~ the number of dimensions
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Adding dimensions increases feature space volume



Curse of dimensionality in the distance function

● New dimensions add non-negative terms to the sum

● Distance increases with the number of dimensions

● For a given number of examples, the feature space becomes 

increasingly sparse

Euclidean distance



Increasing sparsity with higher dimensions
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 The more the features, the larger the hypothesis space

The lower the hypothesis space
● the easier it is to find the correct hypothesis
● the less examples you need

The Hughes effect



Dimensionality Reduction

Curse of Dimensionality: 
An example



How dimensionality impacts in other ways

● Runtime and system memory 

requirements

● Solutions take longer to reach global 

optima

● More dimensions raise the likelihood 

of correlated features



More features require more training data

● More features aren’t better if they don’t add predictive information

● Number of training instances needed increases exponentially with each 

added feature

● Reduces real-world usefulness of models



Model #1 (missing a single feature)

sex:InputLayer

cp:InputLayer

fbs:InputLayer

restecg : InputLayer

exang:InputLayer

slope:InputLayer

category_encoding_6:CategoryEncoding

category_encoding_1:CategoryEncoding

category_encoding_2:CategoryEncoding

category_encoding_3:CategoryEncoding

category_encoding_4:CategoryEncoding

normalization_5:Normalization concatenate: Concatenate dense: Dense dropout: dropout dense_1: Dense

ca:InputLayer

age:InputLayer

trestbps:InputLayer

chol:InputLayer

thalach:InputLayer

category_enconding_5:CategoryEncoding

normalization:Normalization

normalization_1:Normalization

normalization_2:Normalization

normalization_3:Normalization

oldpeak:InputLayernormalization_4:Normalization



Model #2 (adds a new feature)

sex:InputLayer

cp:InputLayer

fbs:InputLayer

restecg : InputLayer

exang:InputLayer

category_encoding_6:CategoryEncoding

category_encoding_1:CategoryEncoding

category_encoding_2:CategoryEncoding

category_encoding_3:CategoryEncoding

category_encoding_4:CategoryEncoding

thal:InputLayer string_lookup:StringLookup

ca:InputLayer

age:InputLayer

trestbps:InputLayer

chol:InputLayer

thalach:InputLayer

category_enconding_5:CategoryEncoding

normalization:Normalization

normalization_1:Normalization

normalization_2:Normalization

normalization_3:Normalization

oldpeak:InputLayernormalization_4:Normalization

A new string categorical 
feature is added!

slope:InputLayer normalization_5:Normalization concatenate: Concatenate dense: Dense dropout: dropout dense_1: Dense



from tensorflow.python.keras.utils.layer_utils import count_params

# Number of training parameters in Model #1

>>> count_params(model_1.trainable_variables)

    833

# Number of training parameters in Model #2 (with an added feature)

>>> count_params(model_1.trainable_variables)

    1057

Comparing the two models’ trainable variables



What do ML models need?

● No hard and fast rule on how many features are required

● Number of features to be used vary depending on 

● Prefer uncorrelated data  containing information to 

produce correct results



Manual Dimensionality 
Reduction

Dimensionality Reduction



Increasing predictive performance

● Features must have information to produce correct results

● Derive features from inherent features

● Extract and recombine to create new features



Combining features
● Number of features grows very quickly
● Reduce dimensionality

pixels, 

contours, 

textures, etc.

samples, 

spectrograms, 

etc.

ticks, trends, 

reversals, etc.

dna, marker 

sequences, 

genes, etc.

words, 

grammatical 

classes and 

relations, etc.

Initial features

Feature explosion



Why reduce dimensionality?

Major techniques for 
dimensionality 

reduction Engineering Selection

Storage Computational Consistency Visualization



Need for manually crafting features 

Certainly provides food for thought

Engineer features 

● Tabular - aggregate, combine, 
decompose

● Text-extract context 
indicators 

● Image-prescribe filters for 
relevant structures

Come up with ideas to construct 
“better” features

Devising features to reduce 
dimensionality

Select the right features to maximize 
predictiveness

Evaluate models using chosen 
features

It’s an iterative 
process

Feature Engineering



Manual Dimensionality 
Reduction: case study

Dimensionality Reduction



CSV_COLUMNS = [
    'fare_amount',
    'pickup_datetime', 'pickup_longitude', 'pickup_latitude',
    'Dropoff_longitude', 'dropoff_latitude',
    'passenger_count', 'key',
]

LABEL_COLUMN = 'fare_amount'
STRING_COLS = ['pickup_datetime']
NUMERIC_COLS = ['pickup_longitude', 'pickup_latitude',
                'dropoff_longitude', 'dropoff_latitude',
                'passenger_count']

DEFAULTS = [[0.0], ['na'], [0.0], [0.0], [0.0], [0.0], [0.0], ['na']]
DAYS = ['Sun', 'Mon', 'Tue', 'Wed', 'Thu', 'Fri', 'Sat']

Taxi Fare dataset



dropoff_longitude:InputLayer

passenger_count:InputLayer

pickup_latitude:InputLayer

pickup_longitude:InputLayer

dropoff_latitude:InputLayer

dense_features_4:DenseFeatures h1:Dense h2:Dense fare:Dense

Build the model in Keras



from tensorflow.keras import layers
from tensorflow.keras.metrics import RootMeanSquared as RMSE

dnn_inputs = layers.DenseFeatures(feature_columns.values())(inputs)

h1 = layers.Dense(32, activation='relu', name='h1')(dnn_inputs)
h2 = layers.Dense(8, activation='relu', name='h2')(h1)

output = layers.Dense(1, activation='linear', name='fare')(h2)
model = models.Model(inputs, output)
model.compile(optimizer='adam', loss='mse', 
              metrics=[RMSE(name='rmse'), 'mse'])

Build a baseline model using raw features



Train the model

model rmse

epoch

125

120

115

110

105

100
0 1 2 3 4

train
validation



Increasing model performance with Feature Engineering

● Carefully craft features for the data types

○ Temporal (pickup date & time)

○ Geographical (latitude and longitude)



def parse_datetime(s):
    if type(s) is not str:
        s = s.numpy().decode('utf-8')
    return datetime.datetime.strptime(s, "%Y-%m-%d %H:%M:%S %Z")

def get_dayofweek(s):
    ts = parse_datetime(s)
    return DAYS[ts.weekday()]

@tf.function
def dayofweek(ts_in):
    return tf.map_fn(
        lambda s: tf.py_function(get_dayofweek, inp=[s],
                  Tout=tf.string),
        ts_in)

Handling temporal features



def euclidean(params):

    lon1, lat1, lon2, lat2 = params

    londiff = lon2 - lon1

    latdiff = lat2 - lat1

    return tf.sqrt(londiff * londiff + latdiff * latdiff)

Geolocational features



def scale_longitude(lon_column):

    return (lon_column + 78)/8.

    

Scaling latitude and longitude

def scale_latitude(lat_column):

    return (lat_column - 37)/8.



def transform(inputs, numeric_cols, string_cols, nbuckets):

    ...

    feature_columns = {

        colname: tf.feature_column.numeric_column(colname)

        for colname in numeric_cols

    }

  

Preparing the transformations

  for lon_col in ['pickup_longitude', 'dropoff_longitude']:

        transformed[lon_col] = layers.Lambda(scale_longitude,

            ...)(inputs[lon_col])

    for lat_col in ['pickup_latitude', 'dropoff_latitude']:

        transformed[lat_col] = layers.Lambda(

            scale_latitude,

            ...)(inputs[lat_col])

    ...



def transform(inputs, numeric_cols, string_cols, nbuckets):

    ...

    transformed['euclidean'] = layers.Lambda(

        euclidean,

        name='euclidean')([inputs['pickup_longitude'],

                           inputs['pickup_latitude'],

                           inputs['dropoff_longitude'],

                           inputs['dropoff_latitude']])

    feature_columns['euclidean'] = fc.numeric_column('euclidean')

...

Computing the Euclidean distance



def transform(inputs, numeric_cols, string_cols, nbuckets):

    ...

    latbuckets = np.linspace(0, 1, nbuckets).tolist()

    lonbuckets = ... # Similarly for longitude

    b_plat = fc.bucketized_column(

        feature_columns['pickup_latitude'], latbuckets)

    b_dlat = # Bucketize 'dropoff_latitude'

    b_plon = # Bucketize 'pickup_longitude'

    b_dlon = # Bucketize 'dropoff_longitude'

Bucketizing and feature crossing



ploc = fc.crossed_column([b_plat, b_plon], nbuckets * nbuckets)

dloc = # Feature cross 'b_dlat' and 'b_dlon'

pd_pair = fc.crossed_column([ploc, dloc], nbuckets ** 4)

feature_columns['pickup_and_dropoff'] = fc.embedding_column(pd_pair, 

100)

Bucketizing and feature crossing



dropoff_longitude:InputLayer

passenger_count:InputLayer

pickup_latitude:InputLayer

pickup_longitude:InputLayer

dropoff_latitude:InputLayer

dense_features_4:DenseFeatures h1:Dense h2:Dense fare:Dense

Scale_dropoff_latitude: Lambda

Scale_dropoff_longitude: Lambda

euclidean: Lambda

passenger_count:InputLayer

scale_pickup_latittude:Lambda

scale_pickup_longitude:Lambda

Build a model with the engineered features



Train the new feature engineered model

train
validation

Improved model rmse

epoch 3
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Algorithmic Dimensionality 
Reduction

Dimensionality Reduction



Linear dimensionality reduction

● Linearly project n-dimensional data onto a k-dimensional subspace

(k < n, often k << n)

● There are infinitely many k-dimensional subspaces we can project the 

data onto

● Which one should we choose?



f1 f2 f3 ... ...  ... fn-1 fn

Dimensionality 
Reduction

Output

(dark) 0 1 (bright)

Projecting onto a line



Best k-dimensional subspace for projection

Classification: maximize separation among classes

Example: Linear discriminant analysis (LDA)

Regression: maximize correlation between projected data and response variable

Example: Partial least squares (PLS)

Unsupervised: retain as much data variance as possible

Example: Principal component analysis (PCA)



Principal Component Analysis

Dimensionality Reduction



Principal component analysis (PCA)

● PCA is a minimization of the 

orthogonal distance

● Widely used method for unsupervised 

& linear dimensionality reduction

● Accounts for variance of data in as 

few dimensions as possible using 

linear projections



Principal components (PCs)

● PCs maximize the variance of 

projections

● PCs are orthogonal  

● Gives the best axis to project 

● Goal of PCA: Minimize total squared 

reconstruction error

1st principal vector

2nd principal vector



2-D data



PCA Algorithm - First Principal Component

Step 1

Find a line, such that when the data is projected onto that line, it has the maximum variance



Step 2

Find a second line, orthogonal to the first, that has maximum projected variance

PCA Algorithm - Second Principal Component



Repeat until we have k orthogonal lines

PCA Algorithm

Step 3



pca = PrincipalComponentAnalysis(n_components=2)

pca.fit(X)

X_pca = pca.transform(X)

Applying PCA on Iris



tot = sum(pca.e_vals_)

var_exp = [(i / tot) * 100 for i in sorted(pca.e_vals_, reverse=True)]

cum_var_exp = np.cumsum(var_exp)

Plot the explained variance



loadings = pca.e_vecs_ * np.sqrt(pca.e_vals_)

PCA factor loadings



from sklearn.preprocessing import StandardScaler

from sklearn.decomposition import PCA

from sklearn import datasets

# Load the data

digits = datasets.load_digits()

# Standardize the feature matrix

X = StandardScaler().fit_transform(digits.data)

PCA in scikit-learn



# Create a PCA that will retain 99% of the variance

pca = PCA(n_components=0.99, whiten=True)

# Conduct PCA

X_pca = pca.fit_transform(X)

PCA in scikit-learn



When to use PCA?

Strengths

● A versatile technique

● Fast and simple 

● Offers several variations and extensions (e.g., kernel/sparse PCA)

Weaknesses
● Result is not interpretable

● Requires setting threshold for cumulative explained variance



Other Techniques

Dimensionality Reduction



More dimensionality reduction algorithms

Unsupervised
● Latent Semantic Indexing/Analysis (LSI and LSA) (SVD)

● Independent Component Analysis (ICA)

Matrix 
Factorization

● Non-Negative Matrix Factorization (NMF)

Latent 
Methods

● Latent Dirichlet Allocation (LDA)



Singular value decomposition (SVD)

● SVD decomposes non-square matrices

● Useful for sparse matrices as produced by TF-IDF

● Removes redundant features from the dataset



Independent Components Analysis (ICA)

● PCA seeks directions in feature space that minimize reconstruction 

error

● ICA seeks directions that are most statistically independent 

● ICA addresses higher order dependence



How does ICA work?

● Assume there exists independent signals: 

𝑆 = [𝑠
1

 (𝑡) , 𝑠
2

(𝑡) , … , 𝑠𝑁 (𝑡) ]  

● Linear combinations of signals: 𝑌(𝑡) = 𝐴 𝑆(𝑡)  

○ Both A and S are unknown  

○ A - mixing matrix  

● Goal of ICA: recover original signals, 𝑆(𝑡) from 𝑌(𝑡)



PCA ICA

Removes correlations ✓ ✓ 

Removes higher order 
dependence 

✓ 

All components treated 
fairly?

✓ 

Orthogonality ✓ 

Comparing PCA and ICA



Non-negative Matrix Factorization (NMF)

● NMF models are interpretable and easier to understand

● NMF requires the sample features to be non-negative



Mobile, IoT, and Similar Use 
Cases 

Quantization & Pruning



Trends in adoption of smart devices 



Factors driving this trend

● Demands move ML capability from cloud to on-device

● Cost-effectiveness

● Compliance with privacy regulations



Online ML inference

● To generate real-time predictions you can:

○ Host the model on a server

○ Embed the model in the device

● Is it faster on a server, or on-device?

● Mobile processing limitations?



Classification request

Prediction results

Inference on the cloud/server

Pros
● Lots of compute capacity
● Scalable hardware
● Model complexity handled by the server
● Easy to add new features and update the model
● Low latency and batch prediction

Mobile inference

Cons
● Timely inference is needed



Pro
● Improved speed
● Performance
● Network connectivity
● No to-and-fro communication needed

On-device Inference

Mobile inference

Cons
● Less capacity
● Tight resource constraints



Options
On-device 
inference

On-device
personalization

On-device
training

Cloud-based
web service

Pretrained 
models

Custom 
models

       ML Kit ✓ ✓ ✓ ✓ ✓ 

Core ML ✓ ✓ ✓ ✓ ✓ 

✓ ✓ ✓ ✓ ✓ 

Model deployment

*

* Also supported in TFX



Benefits and Process of 
Quantization

Quantization & Pruning



Quantization



Why quantize neural networks?

● Neural networks have many parameters and take up space

● Shrinking model file size

● Reduce computational resources

● Make models run faster and use less power with low-precision
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Benefits of quantization

● Faster compute

● Low memory bandwidth

● Low power

● Integer operations supported across CPU/DSP/NPUs



-127 127

-3e38 3e38 
0

min max float32

int8

The quantization process



What parts of the model are affected?

● Static values (parameters)

● Dynamic values (activations)

● Computation (transformations)



Trade-offs

● Optimizations impact model accuracy

○ Difficult to predict ahead of time

● In rare cases, models may actually gain some accuracy

● Undefined effects on ML interpretability



Choose the best model for the task



Post Training Quantization

Quantization & Pruning



● Reduced precision representation 

● Incur small loss in model accuracy

● Joint optimization for model and 

latency

Post-training quantization



Technique Benefits

Dynamic range quantization 4x smaller,  2x-3x speedup

Full integer quantization 4x smaller,  3x+ speedup

float16 quantization 2x smaller,  GPU acceleration

Post-training quantization



import tensorflow as tf

converter = tf.lite.TFLiteConverter.from_saved_model(saved_model_dir)

Post training quantization

converter.optimizations = [tf.lite.Optimize.OPTIMIZE_FOR_SIZE]

tflite_quant_model = converter.convert()



INT8

TensorFlow 
(tf.Keras)

Saved 
Model

+
Calibration 

data

TF Lite
Converter

TF Lite
Model

Post-training integer quantization



Model accuracy

● Small accuracy loss incurred (mostly for smaller networks)

● Use the benchmarking tools to evaluate model accuracy

● If the loss of accuracy drop is not within acceptable limits, consider 

using quantization-aware training



Quantization Aware 
Training

Quantization & Pruning



Quantization-aware training (QAT)

● Inserts fake quantization (FQ) nodes in the forward pass

● Rewrites the graph to emulate quantized inference

● Reduces the loss of accuracy due to quantization

● Resulting model contains all data to be quantized according to spec



● INT8

TensorFlow 
(tf.Keras)

Apply QAT
+

Train model

Convert & 
Quantize
(TF Lite)

TF Lite
Model

Quantization-aware training (QAT)
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import tensorflow_model_optimization as tfmot

model = tf.keras.Sequential([

   ...

])

QAT on entire model

# Quantize the entire model.

quantized_model = tfmot.quantization.keras.quantize_model(model)

# Continue with training as usual.

quantized_model.compile(...)

quantized_model.fit(...)



import tensorflow_model_optimization as tfmot

quantize_annotate_layer = tfmot.quantization.keras.quantize_annotate_layer

model = tf.keras.Sequential([

   ...

   # Only annotated layers will be quantized.

   quantize_annotate_layer(Conv2D()),

   quantize_annotate_layer(ReLU()),

   Dense(),

   ...

])

# Quantize the model.

quantized_model = tfmot.quantization.keras.quantize_apply(model)

Quantize part(s) of a model



quantize_annotate_layer = 

tfmot.quantization.keras.quantize_annotate_layer

quantize_annotate_model = 

tfmot.quantization.keras.quantize_annotate_model

quantize_scope = tfmot.quantization.keras.quantize_scope

Quantize custom Keras layer

model = quantize_annotate_model(tf.keras.Sequential([

   quantize_annotate_layer(CustomLayer(20, input_shape=(20,)),

                           DefaultDenseQuantizeConfig()),

   tf.keras.layers.Flatten()

]))



# `quantize_apply` requires mentioning `DefaultDenseQuantizeConfig` with 

`quantize_scope`

with quantize_scope(

  {'DefaultDenseQuantizeConfig': DefaultDenseQuantizeConfig,

   'CustomLayer': CustomLayer}):

  # Use `quantize_apply` to actually make the model quantization aware.

  quant_aware_model = tfmot.quantization.keras.quantize_apply(model)

Quantize custom Keras layer



Model Optimization Results - Accuracy

Model
Top-1 Accuracy 

(Original)
Top-1 Accuracy

(Post Training 
Quantized)

Top-1 Accuracy
(Quantization Aware 

Training)

Mobilenet-v1-1-224 0.709 0.657 0.70

Mobilenet-v2-1-224 0.719 0.637 0.709

Inception_v3 0.78 0.772 0.775

Resnet_v2_101 0.770 0.768 N/A



Model
Latency 

(Original) (ms)
Latency

(Post Training 
Quantized) (ms)

Latency
(Quantization Aware 

Training) (ms)

Mobilenet-v1-1-224 124 112 64

Mobilenet-v2-1-224 89 98 54

Inception_v3 1130 845 543

Resnet_v2_101 3973 2868 N/A

Model Optimization Results - Latency



Model Size (Original) (MB) Size (Optimized) (MB)

Mobilenet-v1-1-224 16.9 4.3

Mobilenet-v2-1-224 14 3.6

Inception_v3 95.7 23.9

Resnet_v2_101 178.3 44.9

Model Optimization Results



Pruning

Quantization & Pruning



Before pruning After pruning 

Connection pruning



Model sparsity

Larger 
models

More 
memory

Less 
efficient

Sparse 
models

Less 
memory

More 
efficient



Before pruning After pruning 

Pruning 
synapses

Pruning 
neurons

Origins of weight pruning



The Lottery Ticket Hypothesis



Finding Sparse Neural Networks

“A randomly-initialized, dense neural network contains a subnetwork that is 

initialized such that — when trained in isolation — it can match the test 

accuracy of the original network after training for at most the same number 

of iterations”

Jonathan Frankle and Michael Carbin



Pruning research is evolving

● The new method didn’t perform well at large scale 

● The new method failed to identify the randomly initialized winners

● It’s an active area of research



Tensors with no sparsity (left), sparsity in blocks of 1x1 (center), and the 
sparsity in blocks 1x2 (right)

Eliminate connections based on their magnitude



Example of sparsity ramp-up function with a schedule to start pruning from step 0 
until step 100, and a final target sparsity of 90%.

Apply sparsity with a pruning routine



Animation of pruning applied to a tensor

 Black cells indicate where the non-zero weights exist

Sparsity increases with training



What’s special about pruning?

● Better storage and/or transmission

● Gain speedups in CPU and some ML accelerators

● Can be used in tandem with quantization to get additional benefits

● Unlock performance improvements



Pruning with TF Model Optimization Toolkit

● INT8

TensorFlow 
(tf.Keras)

Sparsify
+

Train model

Convert & 
Quantize
(TF Lite)

TF Lite
Model



import tensorflow_model_optimization as tfmot

model = build_your_model()  

pruning_schedule = tfmot.sparsity.keras.PolynomialDecay(

                       initial_sparsity=0.50, final_sparsity=0.80,

                       begin_step=2000, end_step=4000)

model_for_pruning = tfmot.sparsity.keras.prune_low_magnitude(

model, 

pruning_schedule=pruning_schedule)

... 

model_for_pruning.fit(...)

Pruning with Keras



Model
Non-sparse 
Top-1 acc.

Sparse 
acc.

Sparsity

Inception
V3

78.1%

78.0% 50%

76.1% 75%

74.6% 87.5%

Mobilenet
V1 224

71.04% 70.84% 50%

Model
Non-sparse 

BLEU
Sparse 
BLEU

Sparsity

GNMT 
EN-DE

26.77

26.86 80%

26.52 85%

26.19 90%

GNMT 
DE-EN

29.47

29.50 80%

29.24 85%

28.81 90%

Results across different models & tasks


