
Copyright Notice
These slides are distributed under the Creative Commons License.

DeepLearning.AI makes these slides available for educational purposes. You may not
use or distribute these slides for commercial purposes. You may make copies of these
slides and use or distribute them for educational purposes as long as you
cite DeepLearning.AI as the source of the slides.

For the rest of the details of the license, see
https://creativecommons.org/licenses/by-sa/2.0/legalcode

http://deeplearning.ai/
http://deeplearning.ai/
https://creativecommons.org/licenses/by-sa/2.0/legalcode

Model Resource
Management Techniques

Welcome

Dimensionality Reduction

Dimensionality Effect on
Performance

High-dimensional data

Before. .. when it
was all about data
mining

● Domain experts selected features

● Designed feature transforms

● Small number of more relevant features were enough

Now … data science
is about integrating
everything

● Data generation and storage is less of a problem

● Squeeze out the best from data

● More high-dimensional data having more features

A note about neural networks

● Yes, neural networks will perform a kind of automatic feature selection

● However, that’s not as efficient as a well-designed dataset and model

○ Much of the model can be largely “shut off” to ignore unwanted

features

○ Even unused parts of the consume space and compute resources

○ Unwanted features can still introduce unwanted noise

○ Each feature requires infrastructure to collect, store, and manage

High-dimensional spaces

Word embedding - An example

?
?
?
?
?
?
?
?

?
?
?
?
?
?
?
?

?
?
?
?
?
?
?
?

?
?
?
?
?
?
?
?

?
?
?
?
?
?
?
?

10

?
?
?
?
?
?
?
?

6 7 8 5 11

Auto Embedding Weight Matrix

[“I want to search for blood pressure result history “,
“Show blood pressure result for patient”,...]

Input layer

(Learned vectors)

Embedding Layer

i

want

to

search

for

blood

pressure

result

history

show

patient

...

LAST

1

2

3

4

5

6

7

8

9

10

11

20

Initialization and loading the dataset

import tensorflow as tf

from tensorflow import keras

import numpy as np

from keras.datasets import reuters

from keras.preprocessing import sequence

num_words = 1000

(reuters_train_x, reuters_train_y), (reuters_test_x, reuters_test_y) =

 tf.keras.datasets.reuters.load_data(num_words=num_words)

n_labels = np.unique(reuters_train_y).shape[0]

Further preprocessing

from keras.utils import np_utils

reuters_train_y = np_utils.to_categorical(reuters_train_y, 46)

reuters_test_y = np_utils.to_categorical(reuters_test_y, 46)

reuters_train_x =

 tf.keras.preprocessing.sequence.pad_sequences(reuters_train_x, maxlen=20)

reuters_test_x = tf.keras.preprocessing.sequence.pad_sequences(reuters_test_x,

 maxlen=20)

Using all dimensions

from tensorflow.keras import layers

model2 = tf.keras.Sequential(

 [

 layers.Embedding(num_words, 1000, input_length= 20),

 layers.Flatten(),

 layers.Dense(256),

 layers.Dropout(0.25),

 layers.Activation('relu'),

 layers.Dense(46),

 layers.Activation('softmax')

])

Model compilation and training

model.compile(loss="categorical_crossentropy", optimizer="rmsprop",

metrics=['accuracy'])

model_1 = model.fit(reuters_train_x, reuters_train_y,

 validation_data=(reuters_test_x , reuters_test_y),

 batch_size=128, epochs=20, verbose=0)

Example with a higher number of dimensions
A

cc

Lo
ss

epochepoch

model accuracy model loss
train
validation

train
validation

0.9

0.8

0.6

0.7

0.5

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5

0.9

0.8

0.6

0.7

0.5

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.50.0 2.5 5.0

Word embeddings: 6 dimensions

from tensorflow.keras import layers

model = tf.keras.Sequential(

 [

 layers.Embedding(num_words, 6, input_length= 20),

 layers.Flatten(),

 layers.Dense(256),

 layers.Dropout(0.25),

 layers.Activation('relu'),

 layers.Dense(46),

 layers.Activation('softmax')

])

Word embeddings: fourth root of the size of the vocab
A

cc

Lo
ss

epochepoch

model accuracy model loss
train
validation

train
validation

0.65

060

0.50

0.55

0.45

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5

2.6

2.4

2.0

2.2

1.8

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.50.0 2.5 5.0

0.40

0.35

1.4

1.6

1.2

Dimensionality Reduction

Curse of Dimensionality

 ML
methods

k-Nearest
Neighbours

Support Vector
Machines

 Distance
measure

e.g., Euclidean
Distance

Recommendation
systems

Many ML methods use the distance measure

● More dimensions → more features

● Risk of overfitting our models

● Distances grow more and more alike

● No clear distinction between clustered objects

● Concentration phenomenon for Euclidean distance

Why is high-dimensional data a problem?

Curse of dimensionality

“As we add more dimensions we also increase the processing power we

need to train the model and make predictions, as well as the amount of

training data required”

Badreesh Shetty

Why are more features bad?

● Redundant / irrelevant features

● More noise added than signal

● Hard to interpret and visualize

● Hard to store and process data

The performance of algorithms ~ the number of dimensions

Optimal Dimensionality (# of features)

C
la

ss
ifi

er
 P

er
fo

rm
an

ce

1 2 3 4 5

(1, 1) (1, 2) (1, 3) (1, 4) (1, 5)

(2, 1) (2, 2) (2, 3) (2, 4) (2, 5)

(3, 1) (3, 2) (3, 3) (3, 4) (3, 5)

(4, 1) (4, 2) (4, 3) (4, 4) (4, 5)

(5, 1) (5, 2) (5, 3) (5, 4) (5, 5)

1-D

2-D

... ...

Adding dimensions increases feature space volume

Curse of dimensionality in the distance function

● New dimensions add non-negative terms to the sum

● Distance increases with the number of dimensions

● For a given number of examples, the feature space becomes

increasingly sparse

Euclidean distance

Increasing sparsity with higher dimensions

D
im

en
si

o
n

 3

Dimension 1

D
im

en
si

o
n

 2

Dimension 1

Dimension 1

D
im

en
si

o
n

 2

D
im

en
si

o
n

 3

Dimension 1

D
im

en
si

o
n

 2

x x x

x

x

x

x x x

x x x

x x x

 The more the features, the larger the hypothesis space

The lower the hypothesis space
● the easier it is to find the correct hypothesis
● the less examples you need

The Hughes effect

Dimensionality Reduction

Curse of Dimensionality:
An example

How dimensionality impacts in other ways

● Runtime and system memory

requirements

● Solutions take longer to reach global

optima

● More dimensions raise the likelihood

of correlated features

More features require more training data

● More features aren’t better if they don’t add predictive information

● Number of training instances needed increases exponentially with each

added feature

● Reduces real-world usefulness of models

Model #1 (missing a single feature)

sex:InputLayer

cp:InputLayer

fbs:InputLayer

restecg : InputLayer

exang:InputLayer

slope:InputLayer

category_encoding_6:CategoryEncoding

category_encoding_1:CategoryEncoding

category_encoding_2:CategoryEncoding

category_encoding_3:CategoryEncoding

category_encoding_4:CategoryEncoding

normalization_5:Normalization concatenate: Concatenate dense: Dense dropout: dropout dense_1: Dense

ca:InputLayer

age:InputLayer

trestbps:InputLayer

chol:InputLayer

thalach:InputLayer

category_enconding_5:CategoryEncoding

normalization:Normalization

normalization_1:Normalization

normalization_2:Normalization

normalization_3:Normalization

oldpeak:InputLayernormalization_4:Normalization

Model #2 (adds a new feature)

sex:InputLayer

cp:InputLayer

fbs:InputLayer

restecg : InputLayer

exang:InputLayer

category_encoding_6:CategoryEncoding

category_encoding_1:CategoryEncoding

category_encoding_2:CategoryEncoding

category_encoding_3:CategoryEncoding

category_encoding_4:CategoryEncoding

thal:InputLayer string_lookup:StringLookup

ca:InputLayer

age:InputLayer

trestbps:InputLayer

chol:InputLayer

thalach:InputLayer

category_enconding_5:CategoryEncoding

normalization:Normalization

normalization_1:Normalization

normalization_2:Normalization

normalization_3:Normalization

oldpeak:InputLayernormalization_4:Normalization

A new string categorical
feature is added!

slope:InputLayer normalization_5:Normalization concatenate: Concatenate dense: Dense dropout: dropout dense_1: Dense

from tensorflow.python.keras.utils.layer_utils import count_params

Number of training parameters in Model #1

>>> count_params(model_1.trainable_variables)

 833

Number of training parameters in Model #2 (with an added feature)

>>> count_params(model_1.trainable_variables)

 1057

Comparing the two models’ trainable variables

What do ML models need?

● No hard and fast rule on how many features are required

● Number of features to be used vary depending on

● Prefer uncorrelated data containing information to

produce correct results

Manual Dimensionality
Reduction

Dimensionality Reduction

Increasing predictive performance

● Features must have information to produce correct results

● Derive features from inherent features

● Extract and recombine to create new features

Combining features
● Number of features grows very quickly
● Reduce dimensionality

pixels,

contours,

textures, etc.

samples,

spectrograms,

etc.

ticks, trends,

reversals, etc.

dna, marker

sequences,

genes, etc.

words,

grammatical

classes and

relations, etc.

Initial features

Feature explosion

Why reduce dimensionality?

Major techniques for
dimensionality

reduction Engineering Selection

Storage Computational Consistency Visualization

Need for manually crafting features

Certainly provides food for thought

Engineer features

● Tabular - aggregate, combine,
decompose

● Text-extract context
indicators

● Image-prescribe filters for
relevant structures

Come up with ideas to construct
“better” features

Devising features to reduce
dimensionality

Select the right features to maximize
predictiveness

Evaluate models using chosen
features

It’s an iterative
process

Feature Engineering

Manual Dimensionality
Reduction: case study

Dimensionality Reduction

CSV_COLUMNS = [
 'fare_amount',
 'pickup_datetime', 'pickup_longitude', 'pickup_latitude',
 'Dropoff_longitude', 'dropoff_latitude',
 'passenger_count', 'key',
]

LABEL_COLUMN = 'fare_amount'
STRING_COLS = ['pickup_datetime']
NUMERIC_COLS = ['pickup_longitude', 'pickup_latitude',
 'dropoff_longitude', 'dropoff_latitude',
 'passenger_count']

DEFAULTS = [[0.0], ['na'], [0.0], [0.0], [0.0], [0.0], [0.0], ['na']]
DAYS = ['Sun', 'Mon', 'Tue', 'Wed', 'Thu', 'Fri', 'Sat']

Taxi Fare dataset

dropoff_longitude:InputLayer

passenger_count:InputLayer

pickup_latitude:InputLayer

pickup_longitude:InputLayer

dropoff_latitude:InputLayer

dense_features_4:DenseFeatures h1:Dense h2:Dense fare:Dense

Build the model in Keras

from tensorflow.keras import layers
from tensorflow.keras.metrics import RootMeanSquared as RMSE

dnn_inputs = layers.DenseFeatures(feature_columns.values())(inputs)

h1 = layers.Dense(32, activation='relu', name='h1')(dnn_inputs)
h2 = layers.Dense(8, activation='relu', name='h2')(h1)

output = layers.Dense(1, activation='linear', name='fare')(h2)
model = models.Model(inputs, output)
model.compile(optimizer='adam', loss='mse',
 metrics=[RMSE(name='rmse'), 'mse'])

Build a baseline model using raw features

Train the model

model rmse

epoch

125

120

115

110

105

100
0 1 2 3 4

train
validation

Increasing model performance with Feature Engineering

● Carefully craft features for the data types

○ Temporal (pickup date & time)

○ Geographical (latitude and longitude)

def parse_datetime(s):
 if type(s) is not str:
 s = s.numpy().decode('utf-8')
 return datetime.datetime.strptime(s, "%Y-%m-%d %H:%M:%S %Z")

def get_dayofweek(s):
 ts = parse_datetime(s)
 return DAYS[ts.weekday()]

@tf.function
def dayofweek(ts_in):
 return tf.map_fn(
 lambda s: tf.py_function(get_dayofweek, inp=[s],
 Tout=tf.string),
 ts_in)

Handling temporal features

def euclidean(params):

 lon1, lat1, lon2, lat2 = params

 londiff = lon2 - lon1

 latdiff = lat2 - lat1

 return tf.sqrt(londiff * londiff + latdiff * latdiff)

Geolocational features

def scale_longitude(lon_column):

 return (lon_column + 78)/8.

Scaling latitude and longitude

def scale_latitude(lat_column):

 return (lat_column - 37)/8.

def transform(inputs, numeric_cols, string_cols, nbuckets):

 ...

 feature_columns = {

 colname: tf.feature_column.numeric_column(colname)

 for colname in numeric_cols

 }

Preparing the transformations

 for lon_col in ['pickup_longitude', 'dropoff_longitude']:

 transformed[lon_col] = layers.Lambda(scale_longitude,

 ...)(inputs[lon_col])

 for lat_col in ['pickup_latitude', 'dropoff_latitude']:

 transformed[lat_col] = layers.Lambda(

 scale_latitude,

 ...)(inputs[lat_col])

 ...

def transform(inputs, numeric_cols, string_cols, nbuckets):

 ...

 transformed['euclidean'] = layers.Lambda(

 euclidean,

 name='euclidean')([inputs['pickup_longitude'],

 inputs['pickup_latitude'],

 inputs['dropoff_longitude'],

 inputs['dropoff_latitude']])

 feature_columns['euclidean'] = fc.numeric_column('euclidean')

...

Computing the Euclidean distance

def transform(inputs, numeric_cols, string_cols, nbuckets):

 ...

 latbuckets = np.linspace(0, 1, nbuckets).tolist()

 lonbuckets = ... # Similarly for longitude

 b_plat = fc.bucketized_column(

 feature_columns['pickup_latitude'], latbuckets)

 b_dlat = # Bucketize 'dropoff_latitude'

 b_plon = # Bucketize 'pickup_longitude'

 b_dlon = # Bucketize 'dropoff_longitude'

Bucketizing and feature crossing

ploc = fc.crossed_column([b_plat, b_plon], nbuckets * nbuckets)

dloc = # Feature cross 'b_dlat' and 'b_dlon'

pd_pair = fc.crossed_column([ploc, dloc], nbuckets ** 4)

feature_columns['pickup_and_dropoff'] = fc.embedding_column(pd_pair,

100)

Bucketizing and feature crossing

dropoff_longitude:InputLayer

passenger_count:InputLayer

pickup_latitude:InputLayer

pickup_longitude:InputLayer

dropoff_latitude:InputLayer

dense_features_4:DenseFeatures h1:Dense h2:Dense fare:Dense

Scale_dropoff_latitude: Lambda

Scale_dropoff_longitude: Lambda

euclidean: Lambda

passenger_count:InputLayer

scale_pickup_latittude:Lambda

scale_pickup_longitude:Lambda

Build a model with the engineered features

Train the new feature engineered model

train
validation

Improved model rmse

epoch 3

m
se

100

90

80

70
60

50

0 1 2 4

40

30

65 7

baselinel rmse

epoch

125

120

115

110

105

100
0 1 2 3 4

train
validation

Algorithmic Dimensionality
Reduction

Dimensionality Reduction

Linear dimensionality reduction

● Linearly project n-dimensional data onto a k-dimensional subspace

(k < n, often k << n)

● There are infinitely many k-dimensional subspaces we can project the

data onto

● Which one should we choose?

f1 f2 f3 fn-1 fn

Dimensionality
Reduction

Output

(dark) 0 1 (bright)

Projecting onto a line

Best k-dimensional subspace for projection

Classification: maximize separation among classes

Example: Linear discriminant analysis (LDA)

Regression: maximize correlation between projected data and response variable

Example: Partial least squares (PLS)

Unsupervised: retain as much data variance as possible

Example: Principal component analysis (PCA)

Principal Component Analysis

Dimensionality Reduction

Principal component analysis (PCA)

● PCA is a minimization of the

orthogonal distance

● Widely used method for unsupervised

& linear dimensionality reduction

● Accounts for variance of data in as

few dimensions as possible using

linear projections

Principal components (PCs)

● PCs maximize the variance of

projections

● PCs are orthogonal

● Gives the best axis to project

● Goal of PCA: Minimize total squared

reconstruction error

1st principal vector

2nd principal vector

2-D data

PCA Algorithm - First Principal Component

Step 1

Find a line, such that when the data is projected onto that line, it has the maximum variance

Step 2

Find a second line, orthogonal to the first, that has maximum projected variance

PCA Algorithm - Second Principal Component

Repeat until we have k orthogonal lines

PCA Algorithm

Step 3

pca = PrincipalComponentAnalysis(n_components=2)

pca.fit(X)

X_pca = pca.transform(X)

Applying PCA on Iris

tot = sum(pca.e_vals_)

var_exp = [(i / tot) * 100 for i in sorted(pca.e_vals_, reverse=True)]

cum_var_exp = np.cumsum(var_exp)

Plot the explained variance

loadings = pca.e_vecs_ * np.sqrt(pca.e_vals_)

PCA factor loadings

from sklearn.preprocessing import StandardScaler

from sklearn.decomposition import PCA

from sklearn import datasets

Load the data

digits = datasets.load_digits()

Standardize the feature matrix

X = StandardScaler().fit_transform(digits.data)

PCA in scikit-learn

Create a PCA that will retain 99% of the variance

pca = PCA(n_components=0.99, whiten=True)

Conduct PCA

X_pca = pca.fit_transform(X)

PCA in scikit-learn

When to use PCA?

Strengths

● A versatile technique

● Fast and simple

● Offers several variations and extensions (e.g., kernel/sparse PCA)

Weaknesses
● Result is not interpretable

● Requires setting threshold for cumulative explained variance

Other Techniques

Dimensionality Reduction

More dimensionality reduction algorithms

Unsupervised
● Latent Semantic Indexing/Analysis (LSI and LSA) (SVD)

● Independent Component Analysis (ICA)

Matrix
Factorization

● Non-Negative Matrix Factorization (NMF)

Latent
Methods

● Latent Dirichlet Allocation (LDA)

Singular value decomposition (SVD)

● SVD decomposes non-square matrices

● Useful for sparse matrices as produced by TF-IDF

● Removes redundant features from the dataset

Independent Components Analysis (ICA)

● PCA seeks directions in feature space that minimize reconstruction

error

● ICA seeks directions that are most statistically independent

● ICA addresses higher order dependence

How does ICA work?

● Assume there exists independent signals:

𝑆 = [𝑠
1

 (𝑡) , 𝑠
2

(𝑡) , … , 𝑠𝑁 (𝑡)]

● Linear combinations of signals: 𝑌(𝑡) = 𝐴 𝑆(𝑡)

○ Both A and S are unknown

○ A - mixing matrix

● Goal of ICA: recover original signals, 𝑆(𝑡) from 𝑌(𝑡)

PCA ICA

Removes correlations ✓ ✓

Removes higher order
dependence

✓

All components treated
fairly?

✓

Orthogonality ✓

Comparing PCA and ICA

Non-negative Matrix Factorization (NMF)

● NMF models are interpretable and easier to understand

● NMF requires the sample features to be non-negative

Mobile, IoT, and Similar Use
Cases

Quantization & Pruning

Trends in adoption of smart devices

Factors driving this trend

● Demands move ML capability from cloud to on-device

● Cost-effectiveness

● Compliance with privacy regulations

Online ML inference

● To generate real-time predictions you can:

○ Host the model on a server

○ Embed the model in the device

● Is it faster on a server, or on-device?

● Mobile processing limitations?

Classification request

Prediction results

Inference on the cloud/server

Pros
● Lots of compute capacity
● Scalable hardware
● Model complexity handled by the server
● Easy to add new features and update the model
● Low latency and batch prediction

Mobile inference

Cons
● Timely inference is needed

Pro
● Improved speed
● Performance
● Network connectivity
● No to-and-fro communication needed

On-device Inference

Mobile inference

Cons
● Less capacity
● Tight resource constraints

Options
On-device
inference

On-device
personalization

On-device
training

Cloud-based
web service

Pretrained
models

Custom
models

 ML Kit ✓ ✓ ✓ ✓ ✓

Core ML ✓ ✓ ✓ ✓ ✓

✓ ✓ ✓ ✓ ✓

Model deployment

*

* Also supported in TFX

Benefits and Process of
Quantization

Quantization & Pruning

Quantization

Why quantize neural networks?

● Neural networks have many parameters and take up space

● Shrinking model file size

● Reduce computational resources

● Make models run faster and use less power with low-precision

To
p

 1
 A

cc
u

ra
cy

70

60

50

40

Runtime (ms) on Pixel 2 big core

105 10050

8bit

Snapdragon 835

MobileNets: Latency vs Accuracy trade-off

Float

Benefits of quantization

● Faster compute

● Low memory bandwidth

● Low power

● Integer operations supported across CPU/DSP/NPUs

-127 127

-3e38 3e38
0

min max float32

int8

The quantization process

What parts of the model are affected?

● Static values (parameters)

● Dynamic values (activations)

● Computation (transformations)

Trade-offs

● Optimizations impact model accuracy

○ Difficult to predict ahead of time

● In rare cases, models may actually gain some accuracy

● Undefined effects on ML interpretability

Choose the best model for the task

Post Training Quantization

Quantization & Pruning

● Reduced precision representation

● Incur small loss in model accuracy

● Joint optimization for model and

latency

Post-training quantization

Technique Benefits

Dynamic range quantization 4x smaller, 2x-3x speedup

Full integer quantization 4x smaller, 3x+ speedup

float16 quantization 2x smaller, GPU acceleration

Post-training quantization

import tensorflow as tf

converter = tf.lite.TFLiteConverter.from_saved_model(saved_model_dir)

Post training quantization

converter.optimizations = [tf.lite.Optimize.OPTIMIZE_FOR_SIZE]

tflite_quant_model = converter.convert()

INT8

TensorFlow
(tf.Keras)

Saved
Model

+
Calibration

data

TF Lite
Converter

TF Lite
Model

Post-training integer quantization

Model accuracy

● Small accuracy loss incurred (mostly for smaller networks)

● Use the benchmarking tools to evaluate model accuracy

● If the loss of accuracy drop is not within acceptable limits, consider

using quantization-aware training

Quantization Aware
Training

Quantization & Pruning

Quantization-aware training (QAT)

● Inserts fake quantization (FQ) nodes in the forward pass

● Rewrites the graph to emulate quantized inference

● Reduces the loss of accuracy due to quantization

● Resulting model contains all data to be quantized according to spec

● INT8

TensorFlow
(tf.Keras)

Apply QAT
+

Train model

Convert &
Quantize
(TF Lite)

TF Lite
Model

Quantization-aware training (QAT)

ReLU6

 +

blases

conv

output

input

Adding the quantization emulation operations

weights

ReLU6 Act quant

 +

blases

conv

Wt
quant

output

input

Adding the quantization emulation operations

weights

import tensorflow_model_optimization as tfmot

model = tf.keras.Sequential([

 ...

])

QAT on entire model

Quantize the entire model.

quantized_model = tfmot.quantization.keras.quantize_model(model)

Continue with training as usual.

quantized_model.compile(...)

quantized_model.fit(...)

import tensorflow_model_optimization as tfmot

quantize_annotate_layer = tfmot.quantization.keras.quantize_annotate_layer

model = tf.keras.Sequential([

 ...

 # Only annotated layers will be quantized.

 quantize_annotate_layer(Conv2D()),

 quantize_annotate_layer(ReLU()),

 Dense(),

 ...

])

Quantize the model.

quantized_model = tfmot.quantization.keras.quantize_apply(model)

Quantize part(s) of a model

quantize_annotate_layer =

tfmot.quantization.keras.quantize_annotate_layer

quantize_annotate_model =

tfmot.quantization.keras.quantize_annotate_model

quantize_scope = tfmot.quantization.keras.quantize_scope

Quantize custom Keras layer

model = quantize_annotate_model(tf.keras.Sequential([

 quantize_annotate_layer(CustomLayer(20, input_shape=(20,)),

 DefaultDenseQuantizeConfig()),

 tf.keras.layers.Flatten()

]))

`quantize_apply` requires mentioning `DefaultDenseQuantizeConfig` with

`quantize_scope`

with quantize_scope(

 {'DefaultDenseQuantizeConfig': DefaultDenseQuantizeConfig,

 'CustomLayer': CustomLayer}):

 # Use `quantize_apply` to actually make the model quantization aware.

 quant_aware_model = tfmot.quantization.keras.quantize_apply(model)

Quantize custom Keras layer

Model Optimization Results - Accuracy

Model
Top-1 Accuracy

(Original)
Top-1 Accuracy

(Post Training
Quantized)

Top-1 Accuracy
(Quantization Aware

Training)

Mobilenet-v1-1-224 0.709 0.657 0.70

Mobilenet-v2-1-224 0.719 0.637 0.709

Inception_v3 0.78 0.772 0.775

Resnet_v2_101 0.770 0.768 N/A

Model
Latency

(Original) (ms)
Latency

(Post Training
Quantized) (ms)

Latency
(Quantization Aware

Training) (ms)

Mobilenet-v1-1-224 124 112 64

Mobilenet-v2-1-224 89 98 54

Inception_v3 1130 845 543

Resnet_v2_101 3973 2868 N/A

Model Optimization Results - Latency

Model Size (Original) (MB) Size (Optimized) (MB)

Mobilenet-v1-1-224 16.9 4.3

Mobilenet-v2-1-224 14 3.6

Inception_v3 95.7 23.9

Resnet_v2_101 178.3 44.9

Model Optimization Results

Pruning

Quantization & Pruning

Before pruning After pruning

Connection pruning

Model sparsity

Larger
models

More
memory

Less
efficient

Sparse
models

Less
memory

More
efficient

Before pruning After pruning

Pruning
synapses

Pruning
neurons

Origins of weight pruning

The Lottery Ticket Hypothesis

Finding Sparse Neural Networks

“A randomly-initialized, dense neural network contains a subnetwork that is

initialized such that — when trained in isolation — it can match the test

accuracy of the original network after training for at most the same number

of iterations”

Jonathan Frankle and Michael Carbin

Pruning research is evolving

● The new method didn’t perform well at large scale

● The new method failed to identify the randomly initialized winners

● It’s an active area of research

Tensors with no sparsity (left), sparsity in blocks of 1x1 (center), and the
sparsity in blocks 1x2 (right)

Eliminate connections based on their magnitude

Example of sparsity ramp-up function with a schedule to start pruning from step 0
until step 100, and a final target sparsity of 90%.

Apply sparsity with a pruning routine

Animation of pruning applied to a tensor

 Black cells indicate where the non-zero weights exist

Sparsity increases with training

What’s special about pruning?

● Better storage and/or transmission

● Gain speedups in CPU and some ML accelerators

● Can be used in tandem with quantization to get additional benefits

● Unlock performance improvements

Pruning with TF Model Optimization Toolkit

● INT8

TensorFlow
(tf.Keras)

Sparsify
+

Train model

Convert &
Quantize
(TF Lite)

TF Lite
Model

import tensorflow_model_optimization as tfmot

model = build_your_model()

pruning_schedule = tfmot.sparsity.keras.PolynomialDecay(

 initial_sparsity=0.50, final_sparsity=0.80,

 begin_step=2000, end_step=4000)

model_for_pruning = tfmot.sparsity.keras.prune_low_magnitude(

model,

pruning_schedule=pruning_schedule)

...

model_for_pruning.fit(...)

Pruning with Keras

Model
Non-sparse
Top-1 acc.

Sparse
acc.

Sparsity

Inception
V3

78.1%

78.0% 50%

76.1% 75%

74.6% 87.5%

Mobilenet
V1 224

71.04% 70.84% 50%

Model
Non-sparse

BLEU
Sparse
BLEU

Sparsity

GNMT
EN-DE

26.77

26.86 80%

26.52 85%

26.19 90%

GNMT
DE-EN

29.47

29.50 80%

29.24 85%

28.81 90%

Results across different models & tasks

