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Neural Architecture Search

Welcome



Neural Architecture Search

Hyperparameter tuning



Neural Architecture Search

● Neural architecture search (NAS) is is a technique for automating the 

design of artificial neural networks

● It helps finding the optimal architecture

● This is a search over a huge space

● AutoML is an algorithm to automate this search 



Types of parameters in ML Models

● Trainable parameters: 

○ Learned by the algorithm during training 

○ e.g.  weights of a neural network

● Hyperparameters: 

○ set before launching the learning process 

○ not updated in each training step 

○ e.g:  learning rate or the number of units in a dense layer



Manual hyperparameter tuning is not scalable

● Hyperparameters can be numerous even for small models

● e.g shallow DNN:

○ Architecture choices 

○ activation functions

○ Weight initialization strategy

○ Optimization hyperparameters such as learning rate, stop condition

● Tuning them manually can be a real brain teaser

● Tuning helps with model performance



Automating hyperparameter tuning with Keras Tuner

● Automation is key: open source resources to the rescue

● Keras Tuner:

○ Hyperparameter tuning with Tensorflow 2.0.

○ Many methods available



Neural Architecture Search

Keras Autotuner Demo



Setting up libraries and dataset

import tensorflow as tf
from tensorflow import keras
mnist = tf.keras.datasets.mnist

(x_train, y_train),(x_test, y_test) = mnist.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0



Deep learning “Hello world!”

model = tf.keras.models.Sequential([
  tf.keras.layers.Flatten(input_shape=(28, 28)),
  tf.keras.layers.Dense(512, activation='relu'),
  tf.keras.layers.Dropout(0.2),
  tf.keras.layers.Dense(10, activation='softmax')
])

model.compile(optimizer='adam',
              loss='sparse_categorical_crossentropy',
              metrics=['accuracy'])

model.fit(x_train, y_train, epochs=5)
model.evaluate(x_test, y_test)



Model performance

Epoch 1/5

1875/1875 - 10s 5ms/step - loss: 0.3603 - accuracy: 0.8939

Epoch 2/5

1875/1875 - 10s 5ms/step - loss: 0.1001 - accuracy: 0.9695

Epoch 3/5

1875/1875 - 10s 5ms/step - loss: 0.0717 - accuracy: 0.9781

Epoch 4/5

1875/1875 - 10s 5ms/step - loss: 0.0515 - accuracy: 0.9841

Epoch 5/5

1875/1875 - 10s 5ms/step - loss: 0.0432 - accuracy: 0.9866



Parameters rational: if any

model = tf.keras.models.Sequential([
  tf.keras.layers.Flatten(input_shape=(28, 28)),
  tf.keras.layers.Dense(512, activation='relu'),
  tf.keras.layers.Dropout(0.2),
  tf.keras.layers.Dense(10, activation='softmax')
])

model.compile(optimizer='adam',
              loss='sparse_categorical_crossentropy',
              metrics=['accuracy'])

model.fit(x_train, y_train, epochs=5)
model.evaluate(x_test, y_test)



Is this architecture optimal?

● Do the model need more or less hidden units to perform well?

● How does model size affect the convergence speed?

● Is there any trade off between convergence speed, model size and 

accuracy?

● Search automation is the natural path to take

● Keras tuner built in search functionality.



Automated search with Keras tuner

# First, install Keras Tuner

!pip install -q -U keras-tuner

# Import Keras Tuner after it has been installed

import kerastuner as kt



Building model with iterative search

def model_builder(hp):

  model = keras.Sequential()

  model.add(keras.layers.Flatten(input_shape=(28, 28)))

  hp_units = hp.Int('units', min_value=16, max_value=512, step=16)

  model.add(keras.layers.Dense(units=hp_units, activation='relu'))

  model.add(tf.keras.layers.Dropout(0.2))

  model.add(keras.layers.Dense(10))

  model.compile(optimizer='adam',loss='sparse_categorical_crossentropy',

    metrics=['accuracy'])

  return model



Search strategy

tuner = kt.Hyperband(model_builder,

                     objective='val_accuracy',

                     max_epochs=10,

                     factor=3,

                     directory='my_dir',

                     project_name='intro_to_kt')

Other flavors: RandomSearch // BayesianOptimization // Sklearn



Callback configuration

stop_early = 

    tf.keras.callbacks.EarlyStopping(monitor='val_loss', 

                                     patience=5)

tuner.search(x_train, 

             y_train, 

             epochs=50, 

             validation_split=0.2, 

             callbacks=[stop_early])



Search output

Trial 24 Complete [00h 00m 22s]

val_accuracy: 0.3265833258628845

Best val_accuracy So Far: 0.5167499780654907

Total elapsed time: 00h 05m 05s

Search: Running Trial #25

Hyperparameter    |Value             |Best Value So Far

units             |192               |48

tuner/epochs      |10                |2

tuner/initial_e...|4                 |0

tuner/bracket     |1                 |2

tuner/round       |1                 |0

tuner/trial_id    |a2edc917bda476c...|None



Back to your model

model = tf.keras.models.Sequential([

  tf.keras.layers.Flatten(input_shape=(28, 28)),

  tf.keras.layers.Dense(48, activation='relu'),

  tf.keras.layers.Dropout(0.2),

  tf.keras.layers.Dense(10, activation='softmax')

])



Training output

Epoch 1/5

1875/1875 - 3s 1ms/step - loss: 0.6427 - accuracy: 0.8090

Epoch 2/5

1875/1875 - 3s 1ms/step - loss: 0.2330 - accuracy: 0.9324

Epoch 3/5

1875/1875 - 3s 1ms/step - loss: 0.1835 - accuracy: 0.9448

Epoch 4/5

1875/1875 - 3s 1ms/step - loss: 0.1565 - accuracy: 0.9515

Epoch 5/5

1875/1875 - 3s 1ms/step - loss: 0.1393 - accuracy: 0.9564



AutoML

Intro to AutoML



Outline

● Introduction to AutoML

● Neural Architecture Search

● Search Space and Search Strategies

● Performance Estimation

● AutoML on the Cloud



Automated Machine Learning (AutoML)

Auto ML

Data 
Pipeline

Model
Training

Model
Deployment

Model
Monitoring

Discovery



Data 
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Feature 
Engineering

Train Model
Data 

Ingestion
Validate 

Model

AutoML automates the entire ML workflow



Neural Architecture Search

Search Space 
A

Neural Architecture a ∈ A

Architecture is picked from 
this space by search 
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Neural Architecture Search

● AutoML automates the development of ML 
models

● AutoML is not specific to a particular type of 
model.

● NAS is a technique for automating the design of 
artificial neural networks (ANN).

NAS

AutoML

● Neural Architecture Search (NAS) is a subfield 
of AutoML

https://en.wikipedia.org/wiki/Artificial_neural_network


Real-World example: Meredith Digital

Media & Entertainment

AutoML
Content 
Classification

             Faster        
            Classification

Builds Loyalty

Trend Discovery

Human Level
Performance



AutoML

Understanding Search 
Spaces



Types of Search Spaces
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Macro Architecture Search Space

Contains  individual layers and connection types 

input

Chain structured 
space

L0

L1

LN-1

LN

output

input

Complex search 
space

output



Micro Architecture Search Space

Normal Cell

Reduction Cell

Repertoire

input

output

input

output

input

output

input



AutoML

Search Strategies



1. Grid Search

2. Random Search

3. Bayesian Optimization

4. Evolutionary Algorithms

5. Reinforcement Learning

A Few Search Strategies



Grid Search and Random Search

● Grid Search

○ Exhaustive search approach on fixed grid 

values

● Random Search 

● Both suited for smaller search spaces.

● Both quickly fail with growing size of search 

space.



Bayesian Optimization

● Assumes that a specific probability 
distribution, is underlying the performance.

● Tested architectures constrain the 

probability distribution and guide the 

selection of the next option.

● In this way, promising architectures can be 

stochastically determined and tested.
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Reinforcement Learning

State

● The performance estimation 
strategy determines the reward

Reward

● Agents goal is to maximize a 

reward

Agent

● The available options are 
selected from the search space Action

Search 
space



Controller (RNN)
Train child network  with 

architecture A to get accuracy R 

Agent Controller,
Reward

Accuracy,
Action

Child 
Network

Sample architecture 
A with probability p

Compute gradient of p and scale it 
by R to update the controller

Reinforcement Learning for NAS



AutoML

Measuring AutoML Efficacy



Validation Accuracy

Performance Estimation Strategy

Computationally 
heavy

Time consuming +
High GPU demand

Expensive



1. Lower fidelity estimates

2. Learning Curve Extrapolation

3. Weight Inheritance/ Network Morphisms

Strategies to Reduce the Cost 



Lower Fidelity Estimates

Reduce 
training time

Data subset

Low resolution 
images

Fewer filters 
and cells

● Reduce cost but 
underestimates performance

● Works if relative ranking of 
architectures does not 
change due to lower fidelity 
estimates

● Recent research shows this 
is not the case



Learning Curve Extrapolation

● Requires predicting the learning curve reliably

X
X

● Extrapolates based on initial learning.

● Removes poor performers



Weight Inheritance/Network Morphisms 

● Initialize weights of new architectures based on previously trained 

architectures

○ Similar to transfer learning

● Uses Network Morphism  

● Underlying function unchanged

○ New network inherits knowledge from parent network.

○ Computational speed up: only a few days of GPU usage

○ Network size not inherently bounded



AutoML

AutoML on the Cloud



Popular Cloud Offerings

Cloud-based AutoML

Amazon SageMaker Autopilot

Microsoft Azure Automated Machine Learning

Google Cloud AutoML



Amazon SageMaker Autopilot



Amazon SageMaker Autopilot

Raw tabular data 
in S3 bucket

Select prediction 
target

Automated 
model selection, 
training, and 
tuning

Notebooks for 
visibility and 
control

Select best model



Key features

Quick Iteration

High quality models

Performance ranked 

Selected features

Notebooks for reproducibility



Typical use cases

Price Prediction:
● Stocks
● Utilities
● Real estate

Risk Assessment:
● Individuals
● Assets
● Companies

Churn Prediction:
● Prevent customer loss
● Pattern analysis



Microsoft Azure
Automated Machine Learning



Microsoft Azure AutoML

Automated Feature 
Selection

Automated Model 
Selection

Optimized modelHyperparameter
Tuning



Key features

Quick customization:
● Model
● Control settings

Data Visualization

Automated Feature Engineering

Intelligent stopping



Key features

● Experiment summaries
● Metric visualizations

Model Interpretability

Pattern Discovery



Google Cloud AutoML



Google Cloud AutoML

● Accessible to beginners
● Train high-quality models

● GUI Based
● Pipeline life-cycle

● Neural Architecture Search
● Transfer Learning

● Data labeling
● Data cleaning



Structured Data AutoML Tables
Automatically build and deploy state-of-the-art machine learning models on 
structured data.

Cloud AutoML Products

Sight Auto ML Vision

Derive insights from images in the 

cloud or at the edge.

Auto ML Video Intelligence

Enable powerful content discovery 

and engaging video experiences.

Language AutoML Natural Language

Reveal the structure and meaning 

of text through machine learning.

Auto ML Translation

Dynamically detect and translate 

between languages.



AutoML Vision Products

AutoML Vision Object Detection AutoML Vision Edge Object Detection

Auto ML Vision Classification AutoML Vision Edge Image Classification



AutoML Video  Intelligence Classification

Enables you to train machine learning models, to classify shots and segments on 
your videos according to your own defined labels.

AutoML Video Intelligence Products

AutoML Video Object detection

Enables you to train machine learning models to detect and track multiple 
objects, in shots and segments.



So what’s in the secret sauce?

How do these Cloud offerings perform AutoML?

● We don’t know (or can’t say) and they’re not about to 

tell us

● The underlying algorithms will be similar to what 

we’ve learned

● The algorithms will evolve with the state of the art



AutoML

Assignment Setup



Setup 
AutoML

1

Steps to Classify Images using AutoML Vision

2

Create 
Dataset

Upload images to 

Cloud Storage and 

create dataset in 

Vision. 

3

Train Evaluate

4

Deploy 

model for 

serving

5

Deploy

6

Test

Generate 

predictions using 

deployed model



● Qwiklabs provides real cloud environments that help developers and IT 
professionals learn cloud platforms and software.

● Check tutorial on Qwiklabs basics

Setup 
AutoML

1 2

Create 
Dataset

3

Train Evaluate

4 5

Deploy

6

Test



It’s your turn!


