
Copyright Notice
These slides are distributed under the Creative Commons License.

DeepLearning.AI makes these slides available for educational purposes. You may not
use or distribute these slides for commercial purposes. You may make copies of these
slides and use or distribute them for educational purposes as long as you
cite DeepLearning.AI as the source of the slides.

For the rest of the details of the license, see
https://creativecommons.org/licenses/by-sa/2.0/legalcode

http://deeplearning.ai/
http://deeplearning.ai/
https://creativecommons.org/licenses/by-sa/2.0/legalcode

Neural Architecture Search

Welcome

Neural Architecture Search

Hyperparameter tuning

Neural Architecture Search

● Neural architecture search (NAS) is is a technique for automating the

design of artificial neural networks

● It helps finding the optimal architecture

● This is a search over a huge space

● AutoML is an algorithm to automate this search

Types of parameters in ML Models

● Trainable parameters:

○ Learned by the algorithm during training

○ e.g. weights of a neural network

● Hyperparameters:

○ set before launching the learning process

○ not updated in each training step

○ e.g: learning rate or the number of units in a dense layer

Manual hyperparameter tuning is not scalable

● Hyperparameters can be numerous even for small models

● e.g shallow DNN:

○ Architecture choices

○ activation functions

○ Weight initialization strategy

○ Optimization hyperparameters such as learning rate, stop condition

● Tuning them manually can be a real brain teaser

● Tuning helps with model performance

Automating hyperparameter tuning with Keras Tuner

● Automation is key: open source resources to the rescue

● Keras Tuner:

○ Hyperparameter tuning with Tensorflow 2.0.

○ Many methods available

Neural Architecture Search

Keras Autotuner Demo

Setting up libraries and dataset

import tensorflow as tf
from tensorflow import keras
mnist = tf.keras.datasets.mnist

(x_train, y_train),(x_test, y_test) = mnist.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0

Deep learning “Hello world!”

model = tf.keras.models.Sequential([
 tf.keras.layers.Flatten(input_shape=(28, 28)),
 tf.keras.layers.Dense(512, activation='relu'),
 tf.keras.layers.Dropout(0.2),
 tf.keras.layers.Dense(10, activation='softmax')
])

model.compile(optimizer='adam',
 loss='sparse_categorical_crossentropy',
 metrics=['accuracy'])

model.fit(x_train, y_train, epochs=5)
model.evaluate(x_test, y_test)

Model performance

Epoch 1/5

1875/1875 - 10s 5ms/step - loss: 0.3603 - accuracy: 0.8939

Epoch 2/5

1875/1875 - 10s 5ms/step - loss: 0.1001 - accuracy: 0.9695

Epoch 3/5

1875/1875 - 10s 5ms/step - loss: 0.0717 - accuracy: 0.9781

Epoch 4/5

1875/1875 - 10s 5ms/step - loss: 0.0515 - accuracy: 0.9841

Epoch 5/5

1875/1875 - 10s 5ms/step - loss: 0.0432 - accuracy: 0.9866

Parameters rational: if any

model = tf.keras.models.Sequential([
 tf.keras.layers.Flatten(input_shape=(28, 28)),
 tf.keras.layers.Dense(512, activation='relu'),
 tf.keras.layers.Dropout(0.2),
 tf.keras.layers.Dense(10, activation='softmax')
])

model.compile(optimizer='adam',
 loss='sparse_categorical_crossentropy',
 metrics=['accuracy'])

model.fit(x_train, y_train, epochs=5)
model.evaluate(x_test, y_test)

Is this architecture optimal?

● Do the model need more or less hidden units to perform well?

● How does model size affect the convergence speed?

● Is there any trade off between convergence speed, model size and

accuracy?

● Search automation is the natural path to take

● Keras tuner built in search functionality.

Automated search with Keras tuner

First, install Keras Tuner

!pip install -q -U keras-tuner

Import Keras Tuner after it has been installed

import kerastuner as kt

Building model with iterative search

def model_builder(hp):

 model = keras.Sequential()

 model.add(keras.layers.Flatten(input_shape=(28, 28)))

 hp_units = hp.Int('units', min_value=16, max_value=512, step=16)

 model.add(keras.layers.Dense(units=hp_units, activation='relu'))

 model.add(tf.keras.layers.Dropout(0.2))

 model.add(keras.layers.Dense(10))

 model.compile(optimizer='adam',loss='sparse_categorical_crossentropy',

 metrics=['accuracy'])

 return model

Search strategy

tuner = kt.Hyperband(model_builder,

 objective='val_accuracy',

 max_epochs=10,

 factor=3,

 directory='my_dir',

 project_name='intro_to_kt')

Other flavors: RandomSearch // BayesianOptimization // Sklearn

Callback configuration

stop_early =

 tf.keras.callbacks.EarlyStopping(monitor='val_loss',

 patience=5)

tuner.search(x_train,

 y_train,

 epochs=50,

 validation_split=0.2,

 callbacks=[stop_early])

Search output

Trial 24 Complete [00h 00m 22s]

val_accuracy: 0.3265833258628845

Best val_accuracy So Far: 0.5167499780654907

Total elapsed time: 00h 05m 05s

Search: Running Trial #25

Hyperparameter |Value |Best Value So Far

units |192 |48

tuner/epochs |10 |2

tuner/initial_e...|4 |0

tuner/bracket |1 |2

tuner/round |1 |0

tuner/trial_id |a2edc917bda476c...|None

Back to your model

model = tf.keras.models.Sequential([

 tf.keras.layers.Flatten(input_shape=(28, 28)),

 tf.keras.layers.Dense(48, activation='relu'),

 tf.keras.layers.Dropout(0.2),

 tf.keras.layers.Dense(10, activation='softmax')

])

Training output

Epoch 1/5

1875/1875 - 3s 1ms/step - loss: 0.6427 - accuracy: 0.8090

Epoch 2/5

1875/1875 - 3s 1ms/step - loss: 0.2330 - accuracy: 0.9324

Epoch 3/5

1875/1875 - 3s 1ms/step - loss: 0.1835 - accuracy: 0.9448

Epoch 4/5

1875/1875 - 3s 1ms/step - loss: 0.1565 - accuracy: 0.9515

Epoch 5/5

1875/1875 - 3s 1ms/step - loss: 0.1393 - accuracy: 0.9564

AutoML

Intro to AutoML

Outline

● Introduction to AutoML

● Neural Architecture Search

● Search Space and Search Strategies

● Performance Estimation

● AutoML on the Cloud

Automated Machine Learning (AutoML)

Auto ML

Data
Pipeline

Model
Training

Model
Deployment

Model
Monitoring

Discovery

Data
Validation

Feature
Engineering

Train Model
Data

Ingestion
Validate

Model

AutoML automates the entire ML workflow

Neural Architecture Search

Search Space
A

Neural Architecture a ∈ A

Architecture is picked from
this space by search

strategy

Accuracy

La
te

n
cy

Performance Estimation Strategy

Performance

Search Strategy

Neural Architecture Search

● AutoML automates the development of ML
models

● AutoML is not specific to a particular type of
model.

● NAS is a technique for automating the design of
artificial neural networks (ANN).

NAS

AutoML

● Neural Architecture Search (NAS) is a subfield
of AutoML

https://en.wikipedia.org/wiki/Artificial_neural_network

Real-World example: Meredith Digital

Media & Entertainment

AutoML
Content
Classification

 Faster
 Classification

Builds Loyalty

Trend Discovery

Human Level
Performance

AutoML

Understanding Search
Spaces

Types of Search Spaces

input

Macro

L0

L1

LN-1

LN

output

Li

Node

Connection

Micro

input

output

Macro Architecture Search Space

Contains individual layers and connection types

input

Chain structured
space

L0

L1

LN-1

LN

output

input

Complex search
space

output

Micro Architecture Search Space

Normal Cell

Reduction Cell

Repertoire

input

output

input

output

input

output

input

AutoML

Search Strategies

1. Grid Search

2. Random Search

3. Bayesian Optimization

4. Evolutionary Algorithms

5. Reinforcement Learning

A Few Search Strategies

Grid Search and Random Search

● Grid Search

○ Exhaustive search approach on fixed grid

values

● Random Search

● Both suited for smaller search spaces.

● Both quickly fail with growing size of search

space.

Bayesian Optimization

● Assumes that a specific probability
distribution, is underlying the performance.

● Tested architectures constrain the

probability distribution and guide the

selection of the next option.

● In this way, promising architectures can be

stochastically determined and tested.

Parents Selected
Parents

Parents
+

Offspring

X
X X

Select
+

remove

Replace
with

offspring

Repeat

Evolutionary Methods

Reinforcement Learning

State

● The performance estimation
strategy determines the reward

Reward

● Agents goal is to maximize a

reward

Agent

● The available options are
selected from the search space Action

Search
space

Controller (RNN)
Train child network with

architecture A to get accuracy R

Agent Controller,
Reward

Accuracy,
Action

Child
Network

Sample architecture
A with probability p

Compute gradient of p and scale it
by R to update the controller

Reinforcement Learning for NAS

AutoML

Measuring AutoML Efficacy

Validation Accuracy

Performance Estimation Strategy

Computationally
heavy

Time consuming +
High GPU demand

Expensive

1. Lower fidelity estimates

2. Learning Curve Extrapolation

3. Weight Inheritance/ Network Morphisms

Strategies to Reduce the Cost

Lower Fidelity Estimates

Reduce
training time

Data subset

Low resolution
images

Fewer filters
and cells

● Reduce cost but
underestimates performance

● Works if relative ranking of
architectures does not
change due to lower fidelity
estimates

● Recent research shows this
is not the case

Learning Curve Extrapolation

● Requires predicting the learning curve reliably

X
X

● Extrapolates based on initial learning.

● Removes poor performers

Weight Inheritance/Network Morphisms

● Initialize weights of new architectures based on previously trained

architectures

○ Similar to transfer learning

● Uses Network Morphism

● Underlying function unchanged

○ New network inherits knowledge from parent network.

○ Computational speed up: only a few days of GPU usage

○ Network size not inherently bounded

AutoML

AutoML on the Cloud

Popular Cloud Offerings

Cloud-based AutoML

Amazon SageMaker Autopilot

Microsoft Azure Automated Machine Learning

Google Cloud AutoML

Amazon SageMaker Autopilot

Amazon SageMaker Autopilot

Raw tabular data
in S3 bucket

Select prediction
target

Automated
model selection,
training, and
tuning

Notebooks for
visibility and
control

Select best model

Key features

Quick Iteration

High quality models

Performance ranked

Selected features

Notebooks for reproducibility

Typical use cases

Price Prediction:
● Stocks
● Utilities
● Real estate

Risk Assessment:
● Individuals
● Assets
● Companies

Churn Prediction:
● Prevent customer loss
● Pattern analysis

Microsoft Azure
Automated Machine Learning

Microsoft Azure AutoML

Automated Feature
Selection

Automated Model
Selection

Optimized modelHyperparameter
Tuning

Key features

Quick customization:
● Model
● Control settings

Data Visualization

Automated Feature Engineering

Intelligent stopping

Key features

● Experiment summaries
● Metric visualizations

Model Interpretability

Pattern Discovery

Google Cloud AutoML

Google Cloud AutoML

● Accessible to beginners
● Train high-quality models

● GUI Based
● Pipeline life-cycle

● Neural Architecture Search
● Transfer Learning

● Data labeling
● Data cleaning

Structured Data AutoML Tables
Automatically build and deploy state-of-the-art machine learning models on
structured data.

Cloud AutoML Products

Sight Auto ML Vision

Derive insights from images in the

cloud or at the edge.

Auto ML Video Intelligence

Enable powerful content discovery

and engaging video experiences.

Language AutoML Natural Language

Reveal the structure and meaning

of text through machine learning.

Auto ML Translation

Dynamically detect and translate

between languages.

AutoML Vision Products

AutoML Vision Object Detection AutoML Vision Edge Object Detection

Auto ML Vision Classification AutoML Vision Edge Image Classification

AutoML Video Intelligence Classification

Enables you to train machine learning models, to classify shots and segments on
your videos according to your own defined labels.

AutoML Video Intelligence Products

AutoML Video Object detection

Enables you to train machine learning models to detect and track multiple
objects, in shots and segments.

So what’s in the secret sauce?

How do these Cloud offerings perform AutoML?

● We don’t know (or can’t say) and they’re not about to

tell us

● The underlying algorithms will be similar to what

we’ve learned

● The algorithms will evolve with the state of the art

AutoML

Assignment Setup

Setup
AutoML

1

Steps to Classify Images using AutoML Vision

2

Create
Dataset

Upload images to

Cloud Storage and

create dataset in

Vision.

3

Train Evaluate

4

Deploy

model for

serving

5

Deploy

6

Test

Generate

predictions using

deployed model

● Qwiklabs provides real cloud environments that help developers and IT
professionals learn cloud platforms and software.

● Check tutorial on Qwiklabs basics

Setup
AutoML

1 2

Create
Dataset

3

Train Evaluate

4 5

Deploy

6

Test

It’s your turn!

