
Copyright Notice
These slides are distributed under the Creative Commons License.

DeepLearning.AI makes these slides available for educational purposes. You may not use or
distribute these slides for commercial purposes. You may make copies of these slides and
use or distribute them for educational purposes as long as you cite DeepLearning.AI as the
source of the slides.

For the rest of the details of the license, see
https://creativecommons.org/licenses/by-sa/2.0/legalcode

http://deeplearning.ai/
http://deeplearning.ai/
https://creativecommons.org/licenses/by-sa/2.0/legalcode

Advanced Labeling,
Augmentation and

Data Preprocessing

Welcome

Advanced Labeling

Semi-supervised Labeling

Outline

● Overview of advanced labeling techniques:
○ Semi-supervised learning
○ Active learning
○ Weak supervision with Snorkel

Why is Advanced Labeling Important?

● Manually labeling of data is expensive

● Unlabeled data is usually cheap and easy to get

● Unlabeled data contains a lot of information that can

improve our model

ML use is growing everywhere ...as is the need for labeled
training sets

Human labeling, Semi-supervised

Relies on some degree of

uniformity or clustering

within feature space

Train your model

Small pool human

labeled data

Large pool unlabeled data

Human labeling, Semi-supervised

Advantages

Combining labeled and unlabeled
data boosts accuracy

Getting unlabeled data is cheap

Label propagation

● Semi-supervised ML algorithm

● A subset of the examples have labels

● Labels are propagated to the unlabeled points:
○ Based on similarity or “community structure”

Label propagation - Graph based

Unlabeled examples can be assigned labels

based on their neighbors

Partially
labeled

Labels
propagated

Advanced Labeling

Active Learning

● A family of algorithms for intelligently sampling data

● Select the points to be labeled that would be most informative for
model training

● Very helpful in the following situations:

Constrained data budgets: you can only afford labeling a few points

Imbalanced dataset: helps selecting rare classes for training

Target metrics: when baseline sampling strategy does not improve
selected metrics

Active learning

Active learning

Select labeled
examples that will
best help the model
learn

Semi
supervised

Fully
supervised

Form a training dataset
with only those examples

Label propagation for
unlabeled examples

Active learning strategies

Unlabeled
pool

Active learning
sampler

Human annotator

Labeled
training set

ML model

Active learning cycle

Decis
ion

boundary

Class 1

Unlabeled Point

Class 2
Most Uncertain
Point

Margin sampling

Ne
w

de
cis

io
n

bo
un

da
ry

Most Uncertain
Point

0.82

0.78

0.74

0.72

0.70

0 5K 10K 15K 20K 25K

m
ea

n
 a

cc
u

ra
cy

30K 35K

0.84

training examples

Random

Active Learning (Margin sampling)

margin 500
margin_dpp 500
random 500

Example results - Different Sampling Techniques

Margin sampling: Label points the current model is least confident in.

Cluster-based sampling: sample from well-formed clusters to "cover"
the entire space.

Query-by-committee: train an ensemble of models and sample points
that generate disagreement.

Region-based sampling: Runs several active learning algorithms in
different partitions of the space.

Active learning sampling techniques

Advanced Labeling

Weak Supervision

“Hand-labeling training data for machine learning problems is
effective, but very labor and time intensive. This work explores
how to use algorithmic labeling systems relying on other
sources of knowledge that can provide many more labels but
which are noisy.”

Jeff Dean, March 14, 2019

Hand labeling: intensive labor

Weak supervision

“Weak supervision is about leveraging higher-level and/or
noisier input from subject matter experts (SMEs).”

 -Weak Supervision: The New Programming Paradigm for Machine Learning
 Blog post by Ratner, Varma, Hancock, Re, and Hazy Lab

● Unlabeled data, without ground-truth labels

● One or more weak supervision sources

○ A list of heuristics that can automate labeling

○ Typically provided by subject matter experts

● Noisy labels have a certain probability of being correct, not 100%

● Objective: learn a generative model to determine weights for weak

supervision sources

Weak supervision

● Project started at Stanford in 2016

● Programmatically building and managing training datasets without

manual labeling

● Automatically: models, cleans, and integrates the resulting training data

● Applies novel, theoretically-grounded techniques

● Also offers data augmentation and slicing

Snorkel

Data programming pipeline in Snorkel

Unlabeled
Data

Labeling
Functions

(LFs)

Users write labeling
functions to generate noisy
labels for unlabeled data

Discriminative
Model

The labels are used to
train a model

Generative Model

A generative model is
used to de-noise and
weight the labels

from snorkel.labeling import labeling_function

@labeling_function()

def lf_keyword_my(x):

 """Many spam comments talk about 'my channel', 'my video', etc."""

 return SPAM if "my" in x.text.lower() else ABSTAIN

@labeling_function()

def lf_short_comment(x):

 """Non-spam comments are often short, such as 'cool video!'."""

 return NOT_SPAM if len(x.text.split()) < 5 else ABSTAIN

Snorkel labeling functions

● Semi-supervised learning:
○ Applies the best of supervised and unsupervised approaches
○ Using a small amount of labeled data boosts model accuracy

● Active learning:
○ Selects the most important examples to label
○ Improves predictive accuracy

● Weak supervision:
○ Uses heuristics to apply noisy labels to unlabeled examples
○ Snorkel is handy framework for weak supervision

Key points

Data Augmentation

Data Augmentation

● Generating synthetic data

● Augmenting an image dataset: CIFAR-10 example

● Other advanced techniques

Outline

● Augmentation as a way to expand datasets

● One way is introducing minor alterations

● For images: flips, rotations, etc.

How do you get more data?

● Adds examples that are similar to real examples

● Improves coverage of feature space

● Beware of invalid augmentations!

How does augmentation data help?

● 60,000 32x32 color images

● 10 classes of objects

(6,000 images per class)

An example: CIFAR-10 data set

Data augmentation on CIFAR-10

Let's augment the CIFAR-10 dataset with the following steps:

1. Pad the image with a black, four-pixel border

2. Randomly crop a 32 x 32 region from the padded image

3. Flip a coin to determine if the image should be flipped horizontally

left/right

Defining the augment operation

def augment(x, height, width, num_channels):

 x = tf.image.resize_with_crop_or_pad(x, height + 8, width + 8)

 x = tf.image.random_crop(x, [height, width, num_channels])

 x = tf.image.random_flip_left_right(x)

 return x

Augmented examples

● Semi-supervised data augmentation

e.g., UDA, semi-supervised learning

with GANs

● Policy-based data augmentation e.g.,

AutoAugment

Given the low budget and
production limitations, this movie is

very good.

Since it was highly limited in terms
of budget, and the production
restrictions, the film was cheerful.

There are few budget items and
production limitations to make this
film a really good one.

Other Advanced techniques

● It generates artificial data by creating new examples which are variants

of the original data

● It increases the diversity and number of examples in the training data

● Provides means to improves accuracy, generalization, and avoiding

overfitting

Key points on data augmentation

Preprocessing More
Data Types

Time series

A note on different types of data

● TFX pre-processing capabilities for multiple data types:

○ Images

○ Video

○ Text

○ Audio

○ Time series

● Optional notebook on images

● Two optional notebooks on time series

Time series

Time series data

time y(t)

0 0.27

1 0.33

2 0.48

3 0.67

⠇ ⠇

t-1 0.2

t ??? Train model Predict future

“It is difficult to make
predictions, especially

about the future.”
- Karl Kristian Steincke

● Time Series forecasting predicts future events by analyzing data from

the past

● Time series forecasting makes predictions on data indexed by time

● Example:

○ Predict future temperature at a given location based on historical
meteorological data

Time series forecasting

We will use the weather time series dataset recorded by the Max Planck

Institute for Biogeochemistry:

● to preprocess time series data with TensorFlow Transform

● to convert data into sequences of time steps:

○ Making data ready to train a long short-term memory (LSTM)
recurrent neural network (RNN)

Time series dataset: Weather prediction

Weather time series dataset

● There are 14 variables:

○ P(mbar), T (degC), Tdew (degC), rh (%), VPmax (mbar), VPact (mbar), VPdef
(mbar), sh (g/kg), H20C (mmol/mol), rho (g/m**3), wv (m/s), max.xv (m/s),
wd (deg)

○ Target is T (degC)

● Observations recorded every 10 minutes

○ 6 observations per hour

○ 144 (6 X 24) observations in a day.

Data visualizations

Time (years)

Time (years)

Time (years)

T (d
eg

C
)

V
P

m
ax

(m
b

ar
)

sh (g
/k

g)

Windowing data

● Windowing makes sense.

● tf.data.Datasets.window() converts times series data to

depend on past observations.

t=0 t=1 t=2 t=3 t=4 t=5 t=6

label_width=1

Total window size = 7

History size = 6 Output_offset = 1

A model that makes a prediction 1h into the future, given 6h of

history would need a window like this:

Windowing strategies in single step time series

Predict next 24 hours given 24 hours of history

t=0 t=1 t=.. t=22 t=23 t=24 t=25 t=.. t=46 t=47

label_width=1

Total window size = 48

History size = 24 Output_offset = 24

Windowing strategies in single step time series

Total window size = 792

History = 720 (5 * 24 * 6) Offset = 72 (12 * 6)

0 1 ... 4 5 6 7 ... 10 11 ... 714 715 ... 718 719 720 ... 791

label_width=10 6 ... 708 714 720 726 ...786

Windowing strategy for the problem

Hour 1 Hour 2 Hour 720

History = 120 (5 * 24), step_size =6

Total Window size = 126

Offset =6

Sample one observation every hour with step size = 6

Optional notebook: what will you do?

● Data processing with TFX to extract features

● Segment data into windows

● Save data in TFRecord format

● Make it ready for training an LSTM model

Preprocessing More
Data Types

Sensors and Signals

Sensors and Signals

● Signals are sequences of data collected from real time sensors

● Each data point is indexed by a timestamp

● Sensors and signals data is thus time series data

● Example: classify sequences of accelerometer data recorded by the

sensors on smartphones to identify the associate activity

● HAR tasks require segmentation operations

○ Raw inertial data from wearables fluctuate greatly over time

Human activity recognition (HAR)

segmentation

ac
ce

le
ra

ti
o

n

x-axis

y-axis

z-axis

time

● Segmented data should be transformed for modeling

● Different methods of transformation:

○ Spectrograms (commonly used)

○ Normalization and encoding

○ Multichannel

○ Fourier transform

Human activity recognition (HAR)

Optional notebook: what will you do?

● Work with Human Activity Recognition Dataset (WISDM):

○ Preprocess with TensorFlow Transform

○ Use tf.data.Datasets.window() for converting times series data to depend
on past observations

Preprocessing More
Data Types

Time Series Assignment
Walkthrough

Detecting inconsistent data

count mean std min 25% 50% 75% max

wv (m/s) 420551 1.702 65.44 -9999.0 0.99 1.76 2.86 28.49

max. wv
(m/s)

420551 3.06 69.01 -9999.0 1.76 2.96 4.74 23.5

Features to Remove due to high

correlations:

Feature correlation

p (mbar)

T (degC)

Tpot (K)

Tdew (degC)

rh (%)
VPmax(mbar)
VPact (mbar)

VPdef (mbar)

sh (g/kg)
H2OC(mmol/mol)
rho (g/m**3)

wv (m/s)

max. wv (m/s)

wd (deg)

1

-0.75

1. Tpot (k)

2. Tdew (degC)

3. VPact

4. H2OC

5. max. wv

Consistent wind direction and velocity

● Wind direction is in units of degrees

● 3600 and 00 should be close to each other
and wrap around smoothly

● Wind direction doesn’t matter if wind is not
blowing

● Using TF Transform we will convert wind
direction and wind velocity into wind vector

Distribution of Wind Data

Wind direction (deg)

W
in

d
 v

el
 (m

/s
)

● Date Time columns is in string format

● Weather data has clear daily and yearly periodicity

Transformation Needed:

● Convert string date time to timestamp

● Use sin and cos to convert it into 2 features:

○ Time of the day

○ Time of the year

Preprocessing the date time feature

● Read the Input data using beam.io.ReadFromText()

● Clean data using a Beam Transform:

○ Decode the input lines to transform into feature value pairs using a schema

○ Remove extreme min values of -9999.0 from wind velocity and max wind
velocity features

○ Convert Date Time feature to timestamp

Reading and cleaning input data

● First 300,000 records are used for training, the remaining for testing

● You will partition the dataset using the beam.Partition transform

● beam.Partition needs a partition function which defines logic of

partition

Train test splits

● Delete unwanted features (Feature Selection)

● Transform Wind Direction and Wind Velocity to a wind vector

● Transform timestamp DateTime to ‘Time of Year’ and ‘Time of Day’

● Normalize float features

Preprocessing the dataset

Advanced Labeling, Augmentation, and Preprocessing

Semi-supervised labeling

● Graph-based approach

● Active learning

Weak supervision

● Snorkel

Data augmentation

● Image transformations

● Policy-based

Time series

● Windowing

● Sensors and signals

