
Copyright Notice
These slides are distributed under the Creative Commons License.

DeepLearning.AI makes these slides available for educational purposes. You may not use or
distribute these slides for commercial purposes. You may make copies of these slides and
use or distribute them for educational purposes as long as you cite DeepLearning.AI as the
source of the slides.

For the rest of the details of the license, see
https://creativecommons.org/licenses/by-sa/2.0/legalcode

http://deeplearning.ai/
http://deeplearning.ai/
https://creativecommons.org/licenses/by-sa/2.0/legalcode

Data Journey
and Data Storage

Welcome

Data Journey and
Data Storage

Data Journey

Outline

● The data journey

● Accounting for data and model evolution

● Intro to ML metadata

● Using ML metadata to track changes

The data journey

Raw features and
labels

Input-output map ML model to learn
mapping

● Data transforms as it
flows through the
process

● Interpreting model
results requires
understanding data
transformation

Data transformation

Artifacts and the ML pipeline

● Artifacts are created as the components of the ML pipeline execute

● Artifacts include all of the data and objects which are produced by the

pipeline components

● This includes the data, in different stages of transformation, the

schema, the model itself, metrics, etc.

Scoping Data Modeling Deployment

● The chain of transformations that led to the creation of a particular

artifact.

● Important for debugging and reproducibility.

Data provenance and lineage

Data provenance: Why it matters

Helps with debugging and understanding the ML pipeline:

Inspect artifacts at each
point in the training
process

Trace back through a
training run

Compare training runs

Data lineage: data protection regulation

● Organizations must closely track and organize personal data

● Data lineage is extremely important for regulatory compliance

Data provenance: Interpreting results

Data transformations sequence
leading to predictions

Understanding the model as it
evolves through runs

Data versioning

● Data pipeline management is a major challenge

● Machine learning requires reproducibility

● Code versioning: GitHub and similar code repositories

● Environment versioning: Docker, Terraform, and similar

● Data versioning:

○ Version control of datasets

○ Examples: DVC, Git-LFS

Data Journey
and Data Storage

Intro to ML Metadata

Metadata: Tracking artifacts and pipeline changes

Metadata

ML pipeline

Scoping Data Modeling Deployment

Ordinary ML data pipeline

Data
Validation

Data
Transformation

Metadata: Tracking progress

Data
Validation

Data
Transformation

Metadata Store

Metadata: TFX component architecture

Publisher

Executor

Metadata Store

Driver

● Driver:

○ Supplies required metadata
to executor

● Executor:

○ Place to code the
functionality of component

● Publisher:

○ Stores result into metadata

ML Metadata library

● Tracks metadata flowing between components in pipeline

● Supports multiple storage backends

ML Metadata terminology

Units

Artifact

Execution

Context

Relationships

Event

Attribution

Association

Types

ArtifactType

ExecutionType

ContextType

Artifacts: Data going as input
or generated as output by a
component

Execution: Record of
component in pipeline.

Context: Conceptual grouping
of executions and artifacts.

Metadata

Metadata stored

Backend
storage

ML Platform / Workflow (e.g. TFX)

MetadataStore

Artifact:
Artifact Type

Attribution Association

Context:
Context Type

Event: input

Event: output

Execution:
Execution Type

Storage Backend

GUI

Inside MetadataStore

Key points

ML metadata:

● Architecture and nomenclature

● Tracking metadata flowing between components in pipeline

Data Journey and
Data Storage

ML Metadata
in action

Other benefits of ML Metadata

Produce DAG of
pipelines

Verify the inputs
used in an execution

List all artifacts Compare artifacts

!pip install ml-metadata

Import ML Metadata

from ml_metadata import metadata_store

from ml_metadata.proto import metadata_store_pb2

ML Metadata storage backend

● ML metadata registers metadata in a database called Metadata Store

● APIs to record and retrieve metadata to and from the storage backend:

○ Fake database: in-memory for fast experimentation/prototyping

○ SQLite: in-memory and disk

○ MySQL: server based

○ Block storage: File system, storage area network, or cloud based

Fake database

connection_config = metadata_store_pb2.ConnectionConfig()

Set an empty fake database proto

connection_config.fake_database.SetInParent()

store = metadata_store.MetadataStore(connection_config)

SQLite

connection_config = metadata_store_pb2.ConnectionConfig()

connection_config.sqlite.filename_uri = '...'

connection_config.sqlite.connection_mode = 3 # READWRITE_OPENCREATE

store = metadata_store.MetadataStore(connection_config)

MySQL

connection_config.mysql.host = '...'

connection_config.mysql.port = '...'

connection_config.mysql.database = '...'

connection_config.mysql.user = '...'

connection_config.mysql.password = '...'

store = metadata_store.MetadataStore(connection_config)

connection_config = metadata_store_pb2.ConnectionConfig()

ML metadata practice: ungraded lab

● Using a tabular data set, you will explore:

○ Explicit programming in ML Metadata

○ Integration with TFDV

○ Store progress and create provisions to backtrack the experiment

Key points

● Walk through over the data journey addressing lineage and provenance

● The importance of metadata for tracking data evolution

● ML Metadata library and its usefulness to track data changes

● Running an example to register artifacts, executions, and contexts

Evolving Data

Schema Development

Outline

● Develop enterprise schema environments

● Iteratively generate and maintain enterprise data schemas

Review: Recall Schema

Feature name

 Type: float, int, string, etc

Required or optional

Valency (features with multiple values)

Domain: range, categories

Default values

 Schema

Iterative schema development & evolution

Data growth

Data skewed

Anomalies

Reliability during data evolution

Inconsistent data Software User configurations

Platform needs to be resilient to disruptions from:

Execution
environments

Scalability during data evolution

Platform must scale during:

Variable request traffic
during serving

High data volume during training

Anomaly detection during data evolution

Platform designed with these principles:

Data errors treated
same as code bugs

Easy to detect anomalies Update data schema

Schema inspection during data evolution

Looking at schema versions to
track data evolution

Schema can drive other
automated processes

Evolving Data

Schema Environments

Multiple schema versions

Version control

Version 1

Version 2

Version 3

Maintaining varieties of schema

Data evolves rapidlyBusiness use-case needs
to support data from
different sources.

Is anomaly part of
accepted type of
data?

Inspect anomalies in serving dataset
stats_options = tfdv.StatsOptions(schema=schema,

 infer_type_from_schema=True)

eval_stats = tfdv.generate_statistics_from_csv(

 data_location=SERVING_DATASET,

 stats_options=stats_options

)

serving_anomalies = tfdv.validate_statistics(eval_stats, schema)

tfdv.display_anomalies(serving_anomalies)

Anomaly: No labels in serving dataset

Schema environments

● Customize the schema for each environment

● Ex: Add or remove label in schema based on type of dataset

Create environments for each schema
schema.default_environment.append('TRAINING')

schema.default_environment.append('SERVING')

tfdv.get_feature(schema, 'Cover_Type')

 .not_in_environment.append('SERVING')

Inspect anomalies in serving dataset
serving_anomalies = tfdv.validate_statistics(eval_stats,

 schema,

 environment='SERVING')

tfdv.display_anomalies(serving_anomalies)

No anomalies found

Key points

● Iteratively update and fine-tune schema to adapt to evolving data

● How to deal with scalability and anomalies

● Set schema environments to detect anomalies in serving requests

Enterprise Data Storage

Feature Stores

Feature stores

Share

Discover

Use
Curated
features

Teams

Feature stores

Many modeling problems use identical or similar features

Feature StoreFeature engineering Model development

Feature stores

Avoid duplication Control access Purge

Offline feature processing

Run Ingest Publish

Data quality

Offline storage

Discoverability

Online feature usage

Low latency access
to features

Features difficult
to compute online

Precompute and
store for low
latency access

Features for online serving - Batch

● Simple and efficient

● Works well for features to only

be updated every few hours or

once a day

● Same data is used for training and

serving

Batch
precomputing

Loading
history

● Managing feature data from a single person to large enterprises.

● Scalable and performant access to feature data in training and serving.

● Provide consistent and point-in-time correct access to feature data.

● Enable discovery, documentation, and insights into your features.

Feature store: key aspects

Enterprise Data Storage

Data Warehouse

Data warehouse

Aggregates
data sources

Processed
and analyzed

Read
optimized

Not
real time

Follows
schema

Key features of data warehouse

Subject oriented Integrated Time variantNon volatile

Advantages of data warehouse

Enhanced
ability to
analyze data

Timely access
to data

Enhanced
data quality
and
consistency

High return on
investment

Increased query
and system
performance

Comparison with databases

Online analytical processing (OLAP) Online transactional processing (OLTP)

Data is refreshed from source systems Data is available real-time

Stores historical and current data Stores only current data

Data size can scale to >= terabytes Data size can scale to gigabytes

Queries are complex, used for analysis Queries are simple, used for transactions

Queries are long running jobs Queries executed almost in real-time

Tables need not be normalized Tables normalized for efficiency

Data warehouse Database

Enterprise Data Storage

Data Lakes

Data lakes

Aggregates raw data from
one or more sources

Data can be structured
or unstructured

Doesn’t involve any
processing before
writing data

Comparison with data warehouse

Data warehouses Data lakes

Processed RawData Structure

Currently in use Not yet determinedPurpose of data

Business professionals Data scientistsUsers

More complicated and
costly to make changes

Highly accessible and
quick to update

Accessibility

Key points

● Feature store: central repository for storing documented, curated, and

access-controlled features, specifically for ML.

● Data warehouse: subject-oriented repository of structured data

optimized for fast read.

● Data lakes: repository of data stored in its natural and raw format.

