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Data Journey 
and Data Storage

Welcome



Data Journey and 
Data Storage

Data Journey



Outline

● The data journey

● Accounting for data and model evolution  

● Intro to ML metadata

● Using ML metadata to track changes



The data journey

Raw features and 
labels

Input-output map ML model to learn 
mapping



● Data transforms as it 
flows through the 
process

● Interpreting model 
results requires 
understanding data 
transformation

Data transformation



Artifacts and the ML pipeline

● Artifacts are created as the components of the ML pipeline execute

● Artifacts include all of the data and objects which are produced by the 

pipeline components

● This includes the data, in different stages of transformation, the 

schema, the model itself, metrics, etc.

Scoping Data Modeling Deployment



● The chain of transformations that led to the creation of a particular 

artifact.

● Important for debugging and reproducibility.

Data provenance and lineage



Data provenance: Why it matters

Helps with debugging and understanding the ML pipeline:

Inspect artifacts at each 
point in the training 
process

Trace back through a 
training run

Compare training runs



Data lineage: data protection regulation

● Organizations must closely track and organize personal data

● Data lineage is extremely important for regulatory compliance



Data provenance: Interpreting results

Data transformations sequence 
leading to predictions

Understanding the model as it 
evolves through runs



Data versioning

● Data pipeline management is a major challenge

● Machine learning requires reproducibility

● Code versioning: GitHub and similar code repositories

● Environment versioning: Docker, Terraform, and similar

● Data versioning:

○ Version control of datasets

○ Examples: DVC, Git-LFS



Data Journey 
and Data Storage

Intro to ML Metadata



Metadata: Tracking artifacts and pipeline changes

Metadata

ML pipeline

Scoping Data Modeling Deployment



Ordinary ML data pipeline

Data 
Validation

Data 
Transformation



Metadata: Tracking progress

Data 
Validation

Data 
Transformation

Metadata Store



Metadata: TFX component architecture

Publisher

Executor

Metadata Store

Driver

● Driver:

○ Supplies required metadata 
to executor

● Executor:

○ Place to code the 
functionality of component

● Publisher:

○ Stores result into metadata



ML Metadata library

● Tracks metadata flowing between components in pipeline

● Supports multiple storage backends



ML Metadata terminology

Units

Artifact

Execution

Context

Relationships

Event

Attribution

Association

Types

ArtifactType

ExecutionType

ContextType



Artifacts: Data going as input 
or generated as output by a 
component

Execution: Record of 
component in pipeline.

Context: Conceptual grouping 
of executions and artifacts.

Metadata

Metadata stored

Backend
storage



ML Platform / Workflow (e.g. TFX)

MetadataStore

Artifact:
Artifact Type

Attribution Association

Context:
Context Type

Event: input

Event: output

Execution:
Execution Type

Storage Backend

GUI

Inside MetadataStore



Key points

ML metadata:

● Architecture and nomenclature

● Tracking metadata flowing between components in pipeline



Data Journey and 
Data Storage

ML Metadata 
in action



Other benefits of ML Metadata

Produce DAG of 
pipelines

Verify the inputs 
used in an execution

List all artifacts Compare artifacts



!pip install ml-metadata

Import ML Metadata

from ml_metadata import metadata_store

from ml_metadata.proto import metadata_store_pb2



ML Metadata storage backend

● ML metadata registers metadata in a database called Metadata Store

● APIs to record and retrieve metadata to and from the storage backend:

○ Fake database: in-memory for fast experimentation/prototyping

○ SQLite: in-memory and disk 

○ MySQL: server based

○ Block storage: File system, storage area network, or cloud based 



Fake database

connection_config = metadata_store_pb2.ConnectionConfig()

# Set an empty fake database proto

connection_config.fake_database.SetInParent()

store = metadata_store.MetadataStore(connection_config)



SQLite

connection_config = metadata_store_pb2.ConnectionConfig()

connection_config.sqlite.filename_uri = '...'

connection_config.sqlite.connection_mode = 3 # READWRITE_OPENCREATE

store = metadata_store.MetadataStore(connection_config)



MySQL

connection_config.mysql.host = '...'

connection_config.mysql.port = '...'

connection_config.mysql.database = '...'

connection_config.mysql.user = '...'

connection_config.mysql.password = '...'

store = metadata_store.MetadataStore(connection_config)

connection_config = metadata_store_pb2.ConnectionConfig()



ML metadata practice: ungraded lab

● Using a tabular data set, you will explore:

○ Explicit programming in ML Metadata

○ Integration with TFDV

○ Store progress and create provisions to backtrack the experiment



Key points

● Walk through over the data journey addressing lineage and provenance

● The importance of metadata for tracking data evolution

● ML Metadata library and its usefulness to track data changes

● Running an example to register artifacts, executions, and contexts



Evolving Data

Schema Development



Outline

● Develop enterprise schema environments

● Iteratively generate and maintain enterprise data schemas



Review: Recall Schema

Feature name

 Type: float, int, string, etc

Required or optional

Valency (features with multiple values)

Domain: range, categories

Default values

 Schema



Iterative schema development & evolution

Data growth

Data skewed

Anomalies



Reliability during data evolution

Inconsistent data Software User configurations

Platform needs to be resilient to disruptions from:

Execution 
environments



Scalability during data evolution

Platform must scale during:

Variable request traffic 
during serving

High data volume during training



Anomaly detection during data evolution

Platform designed with these principles:

Data errors treated 
same as code bugs

Easy to detect anomalies Update data schema



Schema inspection during data evolution

Looking at schema versions to 
track data evolution

Schema can drive other 
automated processes 



Evolving Data

Schema Environments



Multiple schema versions

Version control

Version 1

Version 2

Version 3



Maintaining varieties of schema

Data evolves rapidlyBusiness use-case needs 
to support data from 
different sources.

Is anomaly part of 
accepted type of 
data?



Inspect anomalies in serving dataset
stats_options = tfdv.StatsOptions(schema=schema,

                                  infer_type_from_schema=True)

eval_stats = tfdv.generate_statistics_from_csv(

    data_location=SERVING_DATASET,

    stats_options=stats_options

)

serving_anomalies = tfdv.validate_statistics(eval_stats, schema)

tfdv.display_anomalies(serving_anomalies)



Anomaly: No labels in serving dataset



Schema environments

● Customize the schema for each environment

● Ex: Add or remove label in schema based on type of dataset



Create environments for each schema
schema.default_environment.append('TRAINING')

schema.default_environment.append('SERVING')

tfdv.get_feature(schema, 'Cover_Type')

    .not_in_environment.append('SERVING')



Inspect anomalies in serving dataset
serving_anomalies = tfdv.validate_statistics(eval_stats,

                                             schema,

                                             environment='SERVING')

tfdv.display_anomalies(serving_anomalies)

# No anomalies found



Key points

● Iteratively update and fine-tune schema to adapt to evolving data

● How to deal with scalability and anomalies

● Set schema environments to detect anomalies in serving requests



Enterprise Data Storage

Feature Stores



Feature stores

Share

Discover

Use
Curated 
features

Teams



Feature stores

Many modeling problems use identical or similar features

Feature StoreFeature engineering Model development



Feature stores

Avoid duplication Control access Purge



Offline feature processing

Run Ingest Publish

Data quality   

Offline storage   

Discoverability   



Online feature usage

Low latency access 
to features

Features difficult 
to compute online

Precompute and 
store for low 
latency access



Features for online serving - Batch

● Simple and efficient

● Works well  for features to only 

be updated every few hours or 

once a day

● Same data is used for training and 

serving

Batch
precomputing

Loading
history



● Managing feature data from a single person to large enterprises.

● Scalable and performant access to feature data in training and serving.

● Provide consistent and point-in-time correct access to feature data.

● Enable discovery, documentation, and insights into your features.

Feature store: key aspects



Enterprise Data Storage

Data Warehouse



Data warehouse

Aggregates 
data sources

Processed 
and analyzed

Read 
optimized

Not
real time

Follows
schema



Key features of data warehouse

Subject oriented Integrated Time variantNon volatile



Advantages of data warehouse

Enhanced 
ability to 
analyze data

Timely access 
to data

Enhanced 
data quality 
and 
consistency

High return on 
investment

Increased query 
and system 
performance



Comparison with databases

Online analytical processing (OLAP) Online transactional processing (OLTP)

Data is refreshed from source systems Data is available real-time

Stores historical and current data Stores only current data

Data size can scale to >= terabytes Data size can scale to gigabytes

Queries are complex, used for analysis Queries are simple, used for transactions

Queries are long running jobs Queries executed almost in real-time

Tables need not be normalized Tables normalized for efficiency

Data warehouse Database



Enterprise Data Storage

Data Lakes



Data lakes

Aggregates raw data from 
one or more sources

Data can be structured 
or unstructured

Doesn’t involve any 
processing before 
writing data



Comparison with data warehouse

Data warehouses Data lakes

Processed RawData Structure

Currently in use Not yet determinedPurpose of data

Business professionals Data scientistsUsers

More complicated and 
costly to make changes

Highly accessible and 
quick to update

Accessibility



Key points

● Feature store: central repository for storing documented, curated, and 

access-controlled features, specifically for ML.

● Data warehouse:  subject-oriented repository of structured data 

optimized for fast read.

● Data lakes: repository of data stored in its natural and raw format.


