# **Copyright Notice**

These slides are distributed under the Creative Commons License.

<u>DeepLearning.Al</u> makes these slides available for educational purposes. You may not use or distribute these slides for commercial purposes. You may make copies of these slides and use or distribute them for educational purposes as long as you cite <u>DeepLearning.Al</u> as the source of the slides.

For the rest of the details of the license, see <u>https://creativecommons.org/licenses/by-sa/2.0/legalcode</u>



#### Feature Engineering, Transformation and Selection

### Welcome



#### **Feature Engineering**

# Introduction to Preprocessing

"Coming up with features is difficult, time-consuming, and requires expert knowledge. Applied machine learning often requires careful engineering of the features and dataset."

Andrew Ng

#### Outline

- Squeezing the most out of data
- The art of feature engineering
- Feature engineering process



• How feature engineering is done in a typical ML pipeline

#### Squeezing the most out of data

- Making data useful before training a model
- Representing data in forms that help models learn
- Increasing predictive quality
- Reducing dimensionality with feature engineering

#### Art of feature engineering





BeepLearning.Al

#### Key points

- Feature engineering can be difficult and time consuming, but also very important to success
- Squeezing the most out of data through feature engineering enables models to learn better
- Concentrating predictive information in fewer features enables more efficient use of compute resources
- Feature engineering during training must also be applied correctly during serving



#### **Feature Engineering**

# Preprocessing Operations

#### Outline

- Main preprocessing operations
- Mapping raw data into features
- Mapping numeric values
- Mapping categorical values
- Empirical knowledge of data



#### Main preprocessing operations











Data cleansing

Feature tuning

Representation transformation

Feature extraction Feature construction



#### Mapping raw data into features



#### Mapping categorical values



#### **Categorical Vocabulary**

# From a vocabulary list

vocabulary\_feature\_column = tf.feature\_column.categorical\_column\_with\_vocabulary\_list(

key=feature\_name,

```
vocabulary_list=["kitchenware", "electronics", "sports"])
```

# From a vocabulary file

vocabulary\_feature\_column = tf.feature\_column.categorical\_column\_with\_vocabulary\_file(

key=feature\_name,

vocabulary\_file="product\_class.txt",

```
vocabulary_size=3)
```

#### Empirical knowledge of data



**Text** - stemming, lemmatization, TF-IDF, n-grams, embedding lookup



**Images** - clipping, resizing, cropping, blur, Canny filters, Sobel filters, photometric distortions



#### Key points

- Data preprocessing: transforms raw data into a clean and training-ready dataset
- Feature engineering maps:
  - Raw data into feature vectors
  - Integer values to floating-point values
  - Normalizes numerical values
  - Strings and categorical values to vectors of numeric values
  - Data from one space into a different space



#### **Feature Engineering**

# Feature Engineering Techniques

#### Outline

- Feature Scaling
- Normalization and Standardization
- Bucketizing / Binning
- Other techniques



#### Feature engineering techniques





#### Scaling

- Converts values from their natural range into a prescribed range
  - E.g. Grayscale image pixel intensity scale is [0,255] usually rescaled to [-1,1]

image = (image - 127.5) / 127.5

- Benefits
  - Helps neural nets converge faster
  - Do away with NaN errors during training
  - For each feature, the model learns the right weights

#### Normalization

$$X_{\text{norm}} = \frac{X - X_{\min}}{X_{\max} - X_{\min}}$$
$$X_{\text{norm}} \in [0, 1]$$





#### Normalization



#### Standardization (z-score)

- Z-score relates the number of standard deviations away from the mean
- Example:

$$X_{\text{std}} = \frac{X - \mu}{\sigma} \quad \text{(z-score)}$$
$$X_{\text{std}} \sim \mathcal{N}(0, \sigma)$$



#### Standardization (z-score)



#### Bucketizing / Binning



#### **Binning with Facets**

| Binning   X-Axis |          | Binning   Y-Axis |   | Color By |   | Label By  |   | Scatter   X-Axis |   | Scatter   Y-A | xis |
|------------------|----------|------------------|---|----------|---|-----------|---|------------------|---|---------------|-----|
| (none)           | -        | (none)           | - | (none)   | ~ | (default) | - | (default)        | - | (default)     | *   |
|                  |          |                  |   |          |   | -         |   |                  |   |               |     |
|                  |          |                  |   |          |   |           |   |                  |   |               |     |
|                  |          |                  |   |          |   |           |   |                  |   |               |     |
|                  |          |                  |   |          |   |           |   |                  |   |               |     |
|                  |          |                  |   |          |   |           |   |                  |   |               |     |
|                  |          |                  |   |          |   |           |   |                  |   |               |     |
|                  |          |                  |   |          |   |           |   |                  |   |               |     |
|                  |          |                  |   |          |   |           |   |                  |   |               |     |
|                  |          |                  |   |          |   |           |   |                  |   |               |     |
|                  |          |                  |   |          |   |           |   |                  |   |               |     |
|                  |          |                  |   |          |   |           |   |                  |   |               |     |
|                  |          |                  |   |          |   |           |   |                  |   |               |     |
|                  |          |                  |   |          |   |           |   |                  |   |               |     |
|                  |          | <i></i>          |   |          |   |           |   |                  |   |               |     |
|                  |          |                  |   |          |   |           |   |                  |   |               |     |
|                  |          |                  |   |          |   |           |   |                  |   |               |     |
|                  |          |                  |   |          |   |           |   |                  |   |               |     |
|                  |          |                  |   |          |   |           |   |                  |   |               |     |
|                  |          |                  |   |          |   |           |   |                  |   |               |     |
|                  |          |                  |   |          |   |           |   |                  |   |               |     |
|                  |          |                  |   |          |   |           |   |                  |   |               |     |
|                  |          |                  |   |          |   |           |   |                  |   |               |     |
|                  |          |                  |   |          |   |           |   |                  |   |               |     |
|                  |          |                  |   |          |   |           |   |                  |   |               |     |
|                  |          |                  |   |          |   |           |   |                  |   |               |     |
| +                |          |                  |   |          |   |           |   |                  |   |               |     |
|                  | Section: |                  |   |          |   |           |   |                  |   |               |     |

#### Other techniques

Dimensionality reduction in embeddings

- Principal component analysis (PCA)
- t-Distributed stochastic neighbor embedding (t-SNE)
- Uniform manifold approximation and projection (UMAP)

Feature crossing

#### TensorFlow embedding projector

- Intuitive exploration of high-dimensional data
- Visualize & analyze
- Techniques
  - PCA
  - t-SNE
  - UMAP
  - Custom linear projections
- Ready to play

DeepLearning.AI

@ projector.tensorflow.org



#### Key points

- Feature engineering:
  - Prepares, tunes, transforms, extracts and constructs features.
- Feature engineering is key for model refinement
- Feature engineering helps with ML analysis



#### **Feature Engineering**

### **Feature Crosses**

#### Outline

- Feature crosses
- Encoding features





#### Feature crosses



- Combines multiple features together into a new feature
- Encodes nonlinearity in the feature space, or encodes the same information in fewer features
- [A X B]: multiplying the values of two features
- [A x B x C x D x E]: multiplying the values of 5 features
- [Day of week, Hour] => [Hour of week]

#### **Encoding features**



- healthy trees
- sick trees
  - Classification boundary

#### Need for encoding non-linearity







- healthy trees
- sick trees
  - Classification boundary

#### Census dataset

| Binning   X-Axis | Binning   Y-Ax             | is | Color By   |   | Label By  |   | Scatter   X-Axis                                     |         | Scatter   Y-A: | xis |
|------------------|----------------------------|----|------------|---|-----------|---|------------------------------------------------------|---------|----------------|-----|
| (none)           | <ul> <li>(none)</li> </ul> | -  | Occupation | - | Education | ~ | (default)                                            | -       | (default)      |     |
|                  |                            |    |            |   |           |   |                                                      |         |                |     |
|                  |                            |    |            |   |           |   |                                                      |         |                |     |
|                  |                            |    |            |   |           |   |                                                      |         |                |     |
|                  |                            |    |            |   |           |   |                                                      |         |                |     |
|                  |                            |    |            |   |           |   |                                                      |         |                |     |
|                  |                            |    |            |   |           |   |                                                      |         |                |     |
|                  |                            |    |            |   |           |   |                                                      |         |                |     |
|                  |                            |    |            |   |           |   |                                                      |         |                |     |
|                  |                            |    |            |   |           |   |                                                      |         |                |     |
|                  |                            |    |            |   |           |   |                                                      |         |                |     |
|                  |                            |    |            |   |           |   |                                                      |         |                |     |
|                  |                            |    |            |   |           |   |                                                      |         |                |     |
|                  |                            |    |            |   |           |   |                                                      |         |                |     |
|                  |                            |    |            |   |           |   |                                                      |         |                |     |
|                  |                            |    |            |   |           |   |                                                      |         |                |     |
|                  |                            |    |            |   |           |   |                                                      |         |                |     |
|                  |                            |    |            |   |           |   |                                                      |         |                |     |
|                  |                            |    |            |   |           |   |                                                      |         |                |     |
|                  |                            |    |            |   |           |   |                                                      |         |                |     |
|                  |                            |    |            |   |           |   | Legend                                               |         | ~              |     |
|                  |                            |    |            |   |           |   |                                                      |         |                |     |
|                  |                            |    |            |   |           |   | Colors                                               |         |                |     |
|                  |                            |    |            |   |           |   | by Occupation                                        | n       |                |     |
|                  |                            |    |            |   |           |   | Prof-special                                         | lty     |                |     |
|                  |                            |    |            |   |           |   | Exec-manage                                          | gerial  |                |     |
|                  |                            |    |            |   |           |   | 🌔 🔴 Craft-repair                                     |         |                |     |
|                  |                            |    |            |   |           |   | Sales                                                | r.      |                |     |
|                  |                            |    |            |   |           |   | Adm-clerica                                          |         |                |     |
| +                |                            |    |            |   |           |   | <ul> <li>Other-servic</li> <li>Machine-on</li> </ul> | -inspct |                |     |
| T                |                            |    |            |   |           |   |                                                      | inspet  |                |     |
#### Key points

- Feature crossing: synthetic feature encoding nonlinearity in feature space.
- Feature coding: transforming categorical to a continuous variable.

# DeepLearning.AI

## Feature Transformation At Scale

# Preprocessing Data At Scale

#### Probably not ideal







Java



#### **ML** Pipeline



#### Outline

- Inconsistencies in feature engineering
- Preprocessing granularity
- Pre-processing training dataset
- Optimizing instance-level transformations
- Summarizing the challenges



#### Preprocessing data at scale





(O) (O)

Real-world models: terabytes of data

Large-scale data processing frameworks

Consistent transforms between training & serving

#### Inconsistencies in feature engineering





Risks of introducing training-serving skews

Skews will lower the performance of your serving model

#### Preprocessing granularity

| Transformations    |                  |  |
|--------------------|------------------|--|
| Instance-level     | Full-pass        |  |
| Clipping           | Minimax          |  |
| Multiplying        | Standard scaling |  |
| Expanding features | Bucketizing      |  |
| etc.               | etc.             |  |

#### When do you transform?

Pre-processing training dataset

| Pros                      | Cons                                  |
|---------------------------|---------------------------------------|
| Run-once                  | Transformations reproduced at serving |
| Compute on entire dataset | Slower iterations                     |



#### How about 'within' a model?

#### Transforming within the model

| Pros                      | Cons                            |
|---------------------------|---------------------------------|
| Easy iterations           | Expensive transforms            |
| Transformation guarantees | Long model latency              |
|                           | Transformations per batch: skew |

#### Why transform per batch?

- For example, normalizing features by their average
- Access to a single batch of data, not the full dataset
- Ways to normalize per batch
  - Normalize by average within a batch
  - Precompute average and reuse it during normalization

#### **Optimizing instance-level transformations**

- Indirectly affect training efficiency
- Typically accelerators sit idle while the CPUs transform
- Solution:
  - Prefetching transforms for better accelerator efficiency

#### Summarizing the challenges

- Balancing predictive performance
- Full-pass transformations on training data
- Optimizing instance-level transformations for better training efficiency (GPUs, TPUs, ...)

#### Key points

- Inconsistent data affects the accuracy of the results
- Need for scaled data processing frameworks to process large datasets in an efficient and distributed manner



## Preprocessing Data At Scale

## **TensorFlow Transform**

#### Outline

- Going deeper
- Benefits of using TensorFlow Transform
- Applies feature transformations
- tf.Transform Analyzers



#### Enter tf.Transform



**PIPELINE + METADATA STORAGE** 



#### Inside TensorFlow Extended



### tf.Transform layout



#### tf. Transform: Going deeper



#### tf.Transform Analyzers



They behave like TensorFlow Ops, but run only once during training

For example: tft.min computes the minimum of a tensor over the training dataset

#### How Transform applies feature transformations





#### Benefits of using tf.Transform

- Emitted tf.Graph holds all necessary constants and transformations
- Focus on data preprocessing only at training time
- Works in-line during both training and serving
- No need for preprocessing code at serving time
- Consistently applied transformations irrespective of deployment platform

Analyzers framework



## tf.Transform preprocessing\_fn

```
def preprocessing_fn(inputs):
```

```
for key in DENSE_FLOAT_FEATURE_KEYS:
    outputs[key] = tft.scale_to_z_score(inputs[key])
```

```
for key in VOCAB_FEATURE_KEYS:
    outputs[key] = tft.vocabulary(inputs[key], vocab_filename=key)
for key in BUCKET_FEATURE_KEYS:
    outputs[key] = tft.bucketize(inputs[key], FEATURE_BUCKET_COUNT)
```

#### Commonly used imports

import tensorflow as tf
import apache\_beam as beam
import apache\_beam.io.iobase

import tensorflow\_transform as tft
import tensorflow\_transform.beam as tft\_beam

# DeepLearning.AI

## Feature Transformation At Scale

# Hello World with tf.Transform

#### Hello world with tf.Transform



#### Collect raw samples (Data)



#### Inspect data and prepare metadata (Data)

```
'y': tf.io.FixedLenFeature([], tf.float32),
    'x': tf.io.FixedLenFeature([], tf.float32),
    's': tf.io.FixedLenFeature([], tf.string)
}))
```

#### Preprocessing data (Transform)

```
def preprocessing fn(inputs):
 ""Preprocess input columns into transformed columns."""
   x, y, s = inputs['x'], inputs['y'], inputs['s']
   x centered = x - tft.mean(x)
   y normalized = tft.scale to 0 1(y)
   s integerized = tft.compute and apply vocabulary(s)
   x_centered_times_y_normalized = (x_centered * y_normalized)
```

### Preprocessing data (Transform)

```
return {
    'x_centered': x_centered,
    'y_normalized': y_normalized,
    's_integerized': s_integerized,
    'x_centered_times_y_normalized': x_centered_times_y_normalized,
}
```

#### Tensors in... tensors out



## Running the pipeline

```
def main():
with tft_beam.Context(temp_dir=tempfile.mkdtemp()):
    transformed_dataset, transform_fn = (
        (raw_data, raw_data_metadata) | tft_beam.AnalyzeAndTransformDataset(
            preprocessing_fn))
```

### Running the pipeline

transformed\_data, transformed\_metadata = transformed\_dataset

```
print('\nRaw data:\n{}\n'.format(pprint.pformat(raw_data)))
print('Transformed data:\n{}'.format(pprint.pformat(transformed_data)))
```

```
if __name__ == '__main__':
    main()
```

#### Before transforming with tf.Transform

```
# Raw data:
[{'s': 'hello', 'x': 1, 'y': 1},
    {'s': 'world', 'x': 2, 'y': 2},
    {'s': 'hello', 'x': 3, 'y': 3}]
```
### After transforming with tf.Transform

#### # After transform

```
[{'s_integerized': 0,
```

```
'x_centered': -1.0,
```

```
'x_centered_times_y_normalized': -0.0,
```

```
'y_normalized': 0.0},
```

```
{'s_integerized': 1,
```

```
'x_centered': 0.0,
```

```
'x_centered_times_y_normalized': 0.0,
```

```
'y_normalized': 0.5},
```

```
{'s_integerized': 0,
```

```
'x_centered': 1.0,
```

```
'x_centered_times_y_normalized': 1.0,
```

```
'y_normalized': 1.0}]
```

### Key points

- tf.Transform allows the pre-processing of input data and creating features
- tf.Transform allows defining pre-processing pipelines and their execution using large-scale data processing frameworks
- In a TFX pipeline, the Transform component implements feature engineering using TensorFlow Transform



#### **Feature Selection**

# **Feature Spaces**

### Outline

- Introduction to Feature Spaces
- Introduction to Feature Selection
- Filter Methods
- Wrapper Methods
- Embedded Methods



#### Feature space

- N dimensional space defined by your N features
- Not including the target label



#### Feature space

| 3D Feature Space               |                        |                |            |  |  |  |
|--------------------------------|------------------------|----------------|------------|--|--|--|
| No. of Rooms<br>X <sub>0</sub> | Area<br>X <sub>1</sub> | Locality $X_2$ | Price<br>Y |  |  |  |
| 5                              | 1200 sq. ft            | New York       | \$40,000   |  |  |  |
| 6                              | 1800 sq. ft            | Texas          | \$30,000   |  |  |  |

 $Y = f(X_0, X_1, X_2)$ f is your ML model acting on feature space X<sub>0</sub>, X<sub>1</sub>, X<sub>2</sub>

#### 2D Feature space - Classification



Drawing decision boundary



Model learns decision boundary

Boundary used to classify data points

#### Feature space coverage

- Train/Eval datasets representative of the serving dataset
  - Same numerical ranges
  - Same classes
  - Similar characteristics for image data
  - Similar vocabulary, syntax, and semantics for NLP data

#### Ensure feature space coverage

- Data affected by: seasonality, trend, drift.
- Serving data: new values in features and labels.
- Continuous monitoring, key for success!



#### **Feature Selection**

# **Feature Selection**

#### **Feature selection**

#### **All Features**



**Feature selection** 

#### **Useful features**



- Identify features that best represent the relationship
- Remove features that don't influence the outcome
- Reduce the size of the feature space
- Reduce the resource requirements and model complexity

### Why is feature selection needed?



Reduce storage and I/O requirements





Minimize training and inference costs



#### Feature selection methods



### **Unsupervised feature selection**

#### 1. Unsupervised

- Features-target variable relationship not considered
- Removes redundant features (correlation)

#### Supervised feature selection

#### 2. Supervised

- Uses features-target variable relationship
- Selects those contributing the most

#### Supervised methods



Feature selection techniques on Breast Cancer Dataset (Diagnostic)

Predicting whether tumour is benign or malignant.



### Feature list

| id                  | diagnosis              | radius-mean          | texture_mea<br>n           | perimeter_<br>mean  | area_mean                | smoothness<br>_mean | compactnes<br>s_mean        | _              |
|---------------------|------------------------|----------------------|----------------------------|---------------------|--------------------------|---------------------|-----------------------------|----------------|
| 842302              | М                      | 17.99                | 10.38                      | 122.8               | 1001.0                   | 0.1184              | 0.2776                      |                |
| concavity_m<br>ean  | concavepoin<br>ts_mean | symmetry_<br>mean    | fractal_dime<br>nsion_mean | radius_se           | texture_se               | perimeter_s<br>e    | area_se                     | Irrelevant     |
| 0.3001              | 0.1471                 | 0.2419               | 0.07871                    | 1.095               | 0.9053                   | 8.589               | 153.4                       | features       |
| smoothness<br>_se   | compactnes<br>s_se     | concavity_se         | concavepoint<br>s_se       | symmetry_<br>se     | fractal_dime<br>nsion_se | radius-wors<br>t    | texture_wor<br>st           | _              |
| 0.0064              | 0.049                  | 0.054                | 0.016                      | 0.03                | 0.006                    | 25.38               | 17.33                       |                |
| perimeter_w<br>orst | area_worst             | smoothness<br>_worst | compactness<br>_worst      | concavity_<br>worst | concavepoin<br>ts_worst  | symmetry_<br>worst  | fractal_dime<br>nsion_worst | Unnamed:3<br>2 |
| 184.6               | 2019.0                 | 0.1622               | 0.6656                     | 0.7119              | 0.2654                   | 0.4601              | 0.1189                      | NaN            |

# We train a **RandomForestClassifier** model in sklearn.ensemble on selected features

Metrics (sklearn.metrics):

| Method       | Feature Count | Accuracy | AUROC    | Precision | Recall  | F1 Score |
|--------------|---------------|----------|----------|-----------|---------|----------|
| All Features | 30            | 0.967262 | 0.964912 | 0.931818  | 0.97619 | 0.953488 |



### **Feature Selection**

# **Filter Methods**

#### Filter methods



#### Filter methods

- Correlated features are usually redundant
  - $\circ$  Remove them!

Popular filter methods:

- Pearson Correlation
  - Between features, and between the features and the label
- Univariate Feature Selection

#### Filter methods





### **Correlation matrix**

- Shows how features are related:
  - To each other (Bad)
  - And with target variable (Good)
- Falls in the range [-1, 1]
  - 1 High positive correlation
  - -1 High negative correlation



### Feature comparison statistical tests

- Pearson's correlation: Linear relationships
- Kendall Tau Rank Correlation Coefficient: Monotonic relationships & small sample size
- Spearman's Rank Correlation Coefficient: Monotonic relationships

Other methods:

- Mutual information
- F-Test
- Chi-Squared test

### **Determine correlation**

```
# Pearson's correlation by default
cor = df.corr()
```

```
plt.figure(figsize=(20,20))
```

#### # Seaborn

sns.heatmap(cor, annot=True, cmap=plt.cm.PuBu)
plt.show()



#### Selecting features

cor\_target = abs(cor["diagnosis\_int"])

# Selecting highly correlated features as potential features to eliminate
relevant\_features = cor\_target[cor\_target>0.2]



#### Performance table

| Method       | Feature Count | Accuracy | AUROC    | Precision | Recall  | F1 Score |
|--------------|---------------|----------|----------|-----------|---------|----------|
| All Features | 30            | 0.967262 | 0.964912 | 0.931818  | 0.97619 | 0.953488 |
| Correlation  | 21            | 0.974206 | 0.973684 | 0.953488  | 0.97619 | 0.964706 |

#### **Best Result**

### Univariate feature selection in SKLearn

SKLearn Univariate feature selection routines:

#### 1. SelectKBest

- 2. SelectPercentile
- 3. GenericUnivariateSelect

Statistical tests available:

- Regression: f\_regression, mutual\_info\_regression
- Classification: chi2, f\_classif, mutual\_info\_classif

### SelectKBest implementation

def univariate\_selection():

```
X_train_scaled = StandardScaler().fit_transform(X_train)
```

X\_test\_scaled = StandardScaler().fit\_transform(X\_test)

```
min_max_scaler = MinMaxScaler()
Scaled_X = min_max_scaler.fit_transform(X_train_scaled)
selector = SelectKBest(chi2, k=20) # Use Chi-Squared test
X_new = selector.fit_transform(Scaled_X, Y_train)
feature_idx = selector.get_support()
feature_names = df.drop("diagnosis_int",axis = 1 ).columns[feature_idx]
return feature_names
```

#### Performance table

| Method                         | Feature Count | Accuracy | AUROC    | Precision | Recall  | F1 Score |
|--------------------------------|---------------|----------|----------|-----------|---------|----------|
| All Features                   | 30            | 0.967262 | 0.964912 | 0.931818  | 0.97619 | 0.953488 |
| Correlation                    | 21            | 0.974206 | 0.973684 | 0.953488  | 0.97619 | 0.964706 |
| Univariate (Chi <sup>2</sup> ) | 20            | 0.960317 | 0.95614  | 0.91111   | 0.97619 | 0.94252  |

#### **Best Result**



#### **Feature Selection**

# Wrapper Methods

#### Wrapper methods



#### Wrapper methods



Popular wrapper methods

- 1. Forward Selection
- 2. Backward Selection
- 3. Recursive Feature Elimination
#### Forward selection

- 1. Iterative, greedy method
- 2. Starts with 1 feature
- 3. Evaluate model performance when **adding** each of the additional features, one at a time
- 4. Add next feature that gives the best performance
- 5. Repeat until there is no improvement

### **Backward elimination**

- 1. Start with all features
- 2. Evaluate model performance when **removing** each of the included features, one at a time
- 3. Remove next feature that gives the best performance
- 4. Repeat until there is no improvement

## Recursive feature elimination (RFE)

- 1. Select a model to use for evaluating feature importance
- 2. Select the desired number of features
- 3. Fit the model
- 4. Rank features by importance
- 5. Discard least important features
- 6. Repeat until the desired number of features remains

#### **Recursive feature elimination**

def run\_rfe():

```
X_train, X_test, y_train, y_test = train_test_split(X,Y, test_size = 0.2, random_state = 0)
```

```
X_train_scaled = StandardScaler().fit_transform(X_train)
X_test_scaled = StandardScaler().fit_transform(X_test)
```

```
model = RandomForestClassifier(criterion='entropy', random_state=47)
rfe = RFE(model, 20)
rfe = rfe.fit(X_train_scaled, y_train)
feature_names = df.drop("diagnosis_int",axis = 1 ).columns[rfe.get_support()]
return feature_names
```

```
rfe_feature_names = run_rfe()
```

rfe\_eval\_df = evaluate\_model\_on\_features(df[rfe\_feature\_names], Y)

rfe\_eval\_df.head()

#### Performance table

| Method                           | Feature Count | Accuracy | AUROC   | Precision | Recall  | F1 Score |
|----------------------------------|---------------|----------|---------|-----------|---------|----------|
| All Features                     | 30            | 0.96726  | 0.96491 | 0.931818  | 0.97619 | 0.953488 |
| Correlation                      | 21            | 0.97420  | 0.97368 | 0.9534883 | 0.97619 | 0.964705 |
| Univariate (Chi <sup>2</sup> )   | 20            | 0.96031  | 0.95614 | 0.91111   | 0.97619 | 0.94252  |
| Recursive Feature<br>Elimination | 20            | 0.97420  | 0.97368 | 0.953488  | 0.97619 | 0.964706 |

**Best Result** 



#### **Feature Selection**

# **Embedded Methods**

#### **Embedded methods**



#### Feature importance

- Assigns scores for each feature in data
- Discard features scored lower by feature importance



### Feature importance with SKLearn

- Feature Importance class is in-built in Tree Based Models (eg., RandomForestClassifier)
- Feature importance is available as a property feature\_importances\_
- We can then use SelectFromModel to select features from the trained model based on assigned feature importances.

#### Extracting feature importance

def feature\_importances\_from\_tree\_based\_model\_():

model = RandomForestClassifier()

model = model.fit(X\_train,Y\_train)

feat\_importances = pd.Series(model.feature\_importances\_, index=X.columns)
feat\_importances.nlargest(10).plot(kind='barh')
plt.show()

return model

### Feature importance plot



def select\_features\_from\_model(model):

model = SelectFromModel(model, prefit=True, threshold=0.012)

```
feature_idx = model.get_support()
feature_names = df.drop("diagnosis_int",1 ).columns[feature_idx]
return feature_names
```

### Tying together and evaluation

#### # Calculate and plot feature importances

model = feature\_importances\_from\_tree\_based\_model\_()

#### # Select features based on feature importances

feature\_imp\_feature\_names = select\_features\_from\_model(model)

#### Performance table

| Method                           | Feature Count | Accuracy | ROC      | Precision | Recall    | F1 Score |
|----------------------------------|---------------|----------|----------|-----------|-----------|----------|
| All Features                     | 30            | 0.96726  | 0.964912 | 0.931818  | 0.9761900 | 0.953488 |
| Correlation                      | 21            | 0.97420  | 0.973684 | 0.953488  | 0.9761904 | 0.964705 |
| Univariate Feature<br>Selection  | 20            | 0.96031  | 0.95614  | 0.91111   | 0.97619   | 0.94252  |
| Recursive Feature<br>Elimination | 20            | 0.9742   | 0.973684 | 0.953488  | 0.97619   | 0.964706 |
| Feature Importance               | 14            | 0.96726  | 0.96491  | 0.931818  | 0.97619   | 0.953488 |

#### **Best Result**

### Review

- Intro to Preprocessing
- Feature Engineering
- Preprocessing Data at Scale
  - TensorFlow Transform
- Feature Spaces
- Feature Selection
  - Filter Methods
  - Wrapper Methods
  - Embedded Methods