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Feature Engineering, 
Transformation and Selection

Welcome



Feature Engineering

Introduction to 
Preprocessing



“Coming up with features is difficult, 
time-consuming, and requires expert knowledge. 
Applied machine learning often requires careful 
engineering of the features and dataset.”

— Andrew Ng



Outline

● Squeezing the most out of data

● The art of feature engineering 

● Feature engineering process

● How feature engineering is done in a typical ML pipeline



Squeezing the most out of data

● Making data useful before training a model

● Representing data in forms that help models learn

● Increasing predictive quality

● Reducing dimensionality with feature engineering



Tune Objective 
Function

Make New 
Features

Launch and 
Reiterate

Combine Features

Feature 
Engineering

Art of feature engineering



Feature
Engineering

Whole Dataset

Batch processing

During training

Each Request

Real-time 
processing

During serving

Typical ML pipeline



● Feature engineering can be difficult and time consuming, but also very 

important to success

● Squeezing the most out of data through feature engineering enables 

models to learn better

● Concentrating predictive information in fewer features enables more 

efficient use of compute resources

● Feature engineering during training must also be applied correctly 

during serving

Key points



Feature Engineering

Preprocessing 
Operations



Outline

● Main preprocessing operations

● Mapping raw data into features

● Mapping numeric values

● Mapping categorical values

● Empirical knowledge of data



Main preprocessing operations

Data cleansing Feature tuning Representation 
transformation

Feature 
extraction

Feature 
construction



Raw Data 

0: { 
 house_info : {
 num_rooms : 6 
 num_bedrooms : 3 
 street_name: “Shorebird Way”
 num_basement_rooms: -1
…
  }
} Raw data doesn’t 

come to us as feature 
vectors

Feature Vector

   Feature Engineering

[
6.0,
1.0,
0.0, 
0.0,
9.321,
-2.20,
1.01,
0.0,
…,
]

Process of creating features 
from raw data is feature 
engineering

Mapping raw data into features



Mapping categorical values

Street names
{'Charleston Road', 'North Shoreline Boulevard', 'Shorebird Way', 'Rengstorff Avenue'}

Raw Data Feature Vector

0: { 
 house_info : {
 num_rooms : 6 
 num_bedrooms : 3 
 street_name: “Shorebird Way”
 num_basement_rooms: -1
…
  }
}

street_name feature=
[0,0, …, 0, 1, 0, …, 0]

One-hot encoding 
This has a 1 for “Shorebird 
way” and 0 for all others 

String Features can be 
handled with one-hot 
encoding 

   Feature Engineering



Categorical Vocabulary
# From a vocabulary list

vocabulary_feature_column = tf.feature_column.categorical_column_with_vocabulary_list(

          key=feature_name,

          vocabulary_list=["kitchenware", "electronics", "sports"])

# From a vocabulary file

vocabulary_feature_column = tf.feature_column.categorical_column_with_vocabulary_file(

                            key=feature_name,

                            vocabulary_file="product_class.txt",

                            vocabulary_size=3)



Text - stemming, lemmatization, TF-IDF, n-grams, 
embedding lookup

Images - clipping, resizing, cropping, blur, Canny filters, 

Sobel filters, photometric distortions

Empirical knowledge of data 



● Data preprocessing: transforms raw data into a clean and 

training-ready dataset

● Feature engineering maps: 
○ Raw data into feature vectors
○ Integer values to floating-point values
○ Normalizes numerical values
○ Strings and categorical values to vectors of numeric values
○ Data from one space into a different space

Key points



Feature Engineering

Feature Engineering 
Techniques



● Feature Scaling

● Normalization and Standardization

● Bucketizing / Binning

● Other techniques 

Outline



Numerical Range

● Scaling
● Normalizing
● Standardizing

Grouping
● Bucketizing
● Bag of words

Feature engineering techniques



● Converts values from their natural range into a 

prescribed range

○ E.g. Grayscale image pixel intensity scale is [0,255] 

usually rescaled to [-1,1]
image = (image - 127.5) / 127.5 

●  Benefits

○ Helps neural nets converge faster

○ Do away with NaN errors during training

○ For each feature, the model learns the right weights

Scaling



Normalization

10 10000

0 1



Original Normalized

Normalization



-3σ  -2σ  -σ       σ    2σ   3σ 

● Z-score relates the number of standard 

deviations away from the mean

● Example:

10 10000

-3σ +3σ

(z-score)

Standardization (z-score)



Original Standardized

Standardization (z-score)



Date Range Represented as...

< 1960 [1, 0, 0, 0]

1960 1980 2000
Bucket 0 Bucket 1 Bucket 2 Bucket 3

>= 1960 but < 1980 [0, 1, 0, 0]

>= 1980 but < 2000 [0, 0, 1, 0]

 >= 2000 [0, 0, 0, 1]

Bucketizing / Binning



Binning with Facets



Dimensionality 
reduction in 
embeddings

● Principal component analysis (PCA)
● t-Distributed stochastic neighbor embedding (t-SNE)
● Uniform manifold approximation and projection (UMAP)

Feature crossing

Other techniques



● Intuitive exploration of 

high-dimensional data

● Visualize & analyze 

● Techniques 

○ PCA 

○ t-SNE 

○ UMAP 

○ Custom linear projections

● Ready to play 

@ projector.tensorflow.org

TensorFlow embedding projector



● Feature engineering:
○ Prepares, tunes, transforms, extracts and constructs features.

● Feature engineering is key for model refinement

● Feature engineering helps with ML analysis

Key points



Feature Engineering

Feature Crosses



Outline

● Feature crosses

● Encoding features



We can create many different 

kinds of feature crosses

● [Day of week, Hour] => [Hour of week]

● [A X B]: multiplying the values of two features

● [A x B x C x D x E]: multiplying the values of 5 features

● Combines multiple features together into a new feature

● Encodes nonlinearity in the feature space, or encodes 

the same information in fewer features

Feature crosses



● healthy trees 

● sick trees

Classification 
boundary

Encoding features



● healthy trees

● sick trees

Classification 
boundary

Need for encoding non-linearity



Census dataset



● Feature crossing: synthetic feature encoding nonlinearity in feature 

space.

● Feature coding: transforming categorical to a continuous variable.

Key points



Feature Transformation At Scale

Preprocessing Data 
At Scale



Probably not ideal

Python Java



Example Gen

TensorFlow 
Extended 

TRAINING &
EVAL DATA

TENSORFLOW
SERVING

Statistics Gen

Trainer Evaluator Pusher

SchemaGen

Transform 

Example
Validator

TENSORFLOW
JS

TENSORFLOW
LITE 

ML Pipeline



● Inconsistencies in feature engineering

● Preprocessing granularity

● Pre-processing training dataset

● Optimizing instance-level transformations

● Summarizing the challenges

Outline



Real-world models:
 terabytes of data

Large-scale data 
processing frameworks

 Consistent transforms 
between training & 

serving

Preprocessing data at scale



Training & serving code paths are different

Diverse deployments scenarios

Risks of introducing training-serving skews

Skews will lower the performance of your serving model

Mobile (TensorFlow Lite)

Server (TensorFlow Serving)

Web (TensorFlow JS)

Inconsistencies in feature engineering



Transformations

Instance-level Full-pass

Clipping Minimax

Multiplying Standard scaling

Expanding features Bucketizing

etc. etc.

Preprocessing granularity



Pre-processing training dataset

Pros Cons

Run-once Transformations reproduced at serving

Compute on entire dataset Slower iterations

When do you transform?



Transforming within the model

Pros Cons

Easy iterations Expensive transforms

Transformation guarantees Long model latency

Transformations per batch: skew

How about ‘within’ a model?



● For example, normalizing features by their average

● Access to a single batch of data, not the full dataset

● Ways to normalize per batch

○ Normalize by average within a batch

○ Precompute average and reuse it during normalization

Why transform per batch?



● Indirectly affect training efficiency

● Typically accelerators sit idle while the CPUs transform

● Solution:

○ Prefetching transforms for better accelerator efficiency

Optimizing instance-level transformations



● Balancing predictive performance

● Full-pass transformations on training data

● Optimizing instance-level transformations for better training efficiency 

(GPUs, TPUs, …)

Summarizing the challenges 



● Inconsistent data affects the accuracy of the results

● Need for scaled data processing frameworks to process large datasets 

in an efficient and distributed manner

Key points



Preprocessing Data At Scale

TensorFlow Transform



● Going deeper

● Benefits of using TensorFlow Transform

● Applies feature transformations

● tf.Transform Analyzers

Outline



Transform

Input data Transformed
Data

Trained 
Models

Trainer

Training Data Serving System

PIPELINE + METADATA STORAGE

Enter tf.Transform



Example Gen

TensorFlow 
Extended 

TRAINING &
EVAL DATA

TENSORFLOW
SERVING

Statistics Gen

Trainer Evaluator Pusher

SchemaGen

Transform 

Example
Validator

TENSORFLOW
JS

TENSORFLOW
LITE 

Inside TensorFlow Extended



ExampleGen SchemaGen

Transform

Trainer

Schema

Transformed
Data

 Code

Transform
Graph

Data● Applied during 
training

● Embedded during 
serving

Performance 
optimizations

● User-provided 
transform 
(tf.Transform)

● Schema for parsing

tf.Transform layout



Beam
Preprocessing

Tf. Transform 
API

Serving

Prediction

Model Training
TensorFlow Graph

Trained Model
Saved

M
o

d
el

Tf. Transform
TensorFlow Graph

Raw Inference 
Request

Model Training
TensorFlow Graph

Processed Data

Training

Tf. Transform
TensorFlow Graph

Raw Data

tf. Transform: Going deeper



tf.Transform Analyzers

They behave like TensorFlow 

Ops, but run only once during 

training

For example:

tft.min computes the minimum 
of a tensor over the training 
dataset



How Transform applies feature transformations

Training Serving



● Emitted tf.Graph holds all necessary constants and transformations

● Focus on data preprocessing only at training time

● Works in-line during both training and serving

● No need for preprocessing code at serving time

● Consistently applied transformations irrespective of deployment 

platform

Benefits of using tf.Transform 



tf.Transform
Analyzers

Vocabulary

Scaling

Dimensionality
Reduction

Bucketizing

scale_to_z_score

scale_to_0_1

quantiles

apply_buckets

bag_of_words

tfidf

ngrams

pca

bucketize

Analyzers framework



def preprocessing_fn(inputs):

...

 for key in DENSE_FLOAT_FEATURE_KEYS:

      

 for key in VOCAB_FEATURE_KEYS:

        

 for key in BUCKET_FEATURE_KEYS:

        

outputs[key] = tft.scale_to_z_score(inputs[key])

 outputs[key] = tft.vocabulary(inputs[key], vocab_filename=key)

outputs[key] = tft.bucketize(inputs[key], FEATURE_BUCKET_COUNT)

tf.Transform preprocessing_fn



Commonly used imports

import tensorflow as tf

import apache_beam as beam

import apache_beam.io.iobase

import tensorflow_transform as tft

import tensorflow_transform.beam as tft_beam



Feature Transformation At Scale 

Hello World 
with tf.Transform



1

Data

Collect raw data

2

Define metadata

Prepare metadata for 

the dataset using 
DatasetMetadata

3

Transform

Define the preprocessing 
function with 

tf.Transform analyzers

Constant graph

Generate a constant 

graph with the 

required 

transformations

4
Analyze

tf.Transform

Hello world with tf.Transform



Collect raw samples (Data)

[

{'x': 1, 'y': 1, 's': 'hello'}, 

{'x': 2, 'y': 2, 's': 'world'},

{'x': 3, 'y': 3, 's': 'hello'}

]



Inspect data and prepare metadata (Data)

from tensorflow_transform.tf_metadata import (

dataset_metadata, dataset_schema)

raw_data_metadata = dataset_metadata.DatasetMetadata(

    dataset_schema.from_feature_spec({

    'y': tf.io.FixedLenFeature([], tf.float32),

        'x': tf.io.FixedLenFeature([], tf.float32),

        's': tf.io.FixedLenFeature([], tf.string)

}))



Preprocessing data (Transform)

def preprocessing_fn(inputs):

"""Preprocess input columns into transformed columns."""

    x, y, s = inputs['x'], inputs['y'], inputs['s']

    x_centered = x - tft.mean(x)

    y_normalized = tft.scale_to_0_1(y)

    s_integerized = tft.compute_and_apply_vocabulary(s)

    x_centered_times_y_normalized = (x_centered * y_normalized)



Preprocessing data (Transform)
   return {

 'x_centered': x_centered,

     'y_normalized': y_normalized,

     's_integerized': s_integerized,

     'x_centered_times_y_normalized': x_centered_times_y_normalized,

    }



[1, 2, 3]

[1, 2, 3]

['hello', 'world', 
'hello']

x

y

s

[-1.0, 0.0, 1.0]

[0.0, 0.5, 1.0]

[0, 1, 0]

[-0.0, 0.0, 1.0]

● x_centered

x - tft.mean(x)

● y_normalized

tft.scale_to_0_1(y)

● s_integerized

tft.compute_and_apply_vocabulary(s)

● x_centered * y_normalized

preprocessing_fn

TensorFlow OpsInputs Outputs

Tensors in… tensors out



Running the pipeline

  def main():

  with tft_beam.Context(temp_dir=tempfile.mkdtemp()):

    transformed_dataset, transform_fn = (  

        (raw_data, raw_data_metadata) | tft_beam.AnalyzeAndTransformDataset(

            preprocessing_fn))



Running the pipeline

 transformed_data, transformed_metadata = transformed_dataset

  print('\nRaw data:\n{}\n'.format(pprint.pformat(raw_data)))

  print('Transformed data:\n{}'.format(pprint.pformat(transformed_data)))

if __name__ == '__main__':

  main()



Before transforming with tf.Transform

# Raw data:

[{'s': 'hello', 'x': 1, 'y': 1},

 {'s': 'world', 'x': 2, 'y': 2},

 {'s': 'hello', 'x': 3, 'y': 3}]



# After transform

[{'s_integerized': 0,

  'x_centered': -1.0,

  'x_centered_times_y_normalized': -0.0,

  'y_normalized': 0.0},

 {'s_integerized': 1,

  'x_centered': 0.0,

  'x_centered_times_y_normalized': 0.0,

  'y_normalized': 0.5},

 {'s_integerized': 0,

  'x_centered': 1.0,

  'x_centered_times_y_normalized': 1.0,

  'y_normalized': 1.0}]

After transforming with tf.Transform



● tf.Transform allows the pre-processing of input data and creating 

features

●  tf.Transform allows defining pre-processing pipelines and their 

execution using large-scale data processing frameworks

● In a TFX pipeline, the Transform component implements feature 

engineering using TensorFlow Transform

Key points



Feature Selection

Feature Spaces



Outline

● Introduction to Feature Spaces

● Introduction to Feature Selection

● Filter Methods

● Wrapper Methods

● Embedded Methods



● N dimensional space defined by your N features

● Not including the target label

Feature space (3D)
X

0 X
1

X
2

X

Scatter plot (2D)

X
1

X
0

Feature vector

Feature space



Feature space

No. of Rooms

X
0

Area

    X
1

Locality

X
2

Price

Y

5 1200 sq. ft New York $40,000

6 1800 sq. ft Texas $30,000

3D Feature Space

Y = f(X
0

, X
1

, X
2

)

f is your ML model acting on feature space X
0

, X
1

, X
2 



x
0

x 1

Ideal

x
0

x 1

Realistic

x
0

x 1

Poor

2D Feature space -  Classification



x
0

x 1

Model learns decision boundary

Boundary used to classify data points

Drawing decision boundary



● Train/Eval datasets  representative of the serving dataset

○ Same numerical ranges

○ Same classes

○ Similar characteristics for image data

○ Similar vocabulary, syntax, and semantics for NLP data

Feature space coverage



● Data affected by: seasonality, trend, drift.

●  Serving data: new values in features and labels.

● Continuous monitoring, key for success!

Ensure feature space coverage



Feature Selection

Feature Selection



 Feature selection

X X X

✅ ✅ ✅
All Features

 Useful features

● Identify features that best represent 

the relationship 

●  Remove features that don’t influence 

the outcome

● Reduce the size of the feature space

● Reduce the resource requirements 

and model complexity

Feature selection



Reduce storage and I/O 
requirements

Minimize training and 
inference costs

Why is feature selection needed?



Feature selection methods

Feature Selection

Unsupervised

Supervised



1. Unsupervised 

● Features-target variable relationship not considered

● Removes redundant features (correlation)

Unsupervised feature selection



2.  Supervised

● Uses features-target variable relationship

● Selects those contributing the most

Supervised feature selection



Supervised methods

Wrapper Methods

Embedded Methods

Filter Methods

Feature Selection Supervised



Feature selection techniques on Breast
Cancer Dataset (Diagnostic)

Predicting whether tumour is benign or 
malignant.

Practical example



id diagnosis radius-mean texture_mea
n

perimeter_
mean

area_mean smoothness
_mean

compactnes
s_mean

842302 M 17.99 10.38 122.8 1001.0 0.1184 0.2776

concavity_m
ean

concavepoin
ts_mean

symmetry_
mean

fractal_dime
nsion_mean

radius_se texture_se perimeter_s
e

area_se

0.3001 0.1471 0.2419 0.07871 1.095 0.9053 8.589 153.4

smoothness
_se

compactnes
s_se

concavity_se concavepoint
s_se

symmetry_
se

fractal_dime
nsion_se

radius-wors
t

texture_wor
st

0.0064 0.049 0.054 0.016 0.03 0.006 25.38 17.33

perimeter_w
orst

area_worst smoothness
_worst

compactness
_worst

concavity_
worst

concavepoin
ts_worst

symmetry_
worst

fractal_dime
nsion_worst

Unnamed:3
2

184.6 2019.0 0.1622 0.6656 0.7119 0.2654 0.4601 0.1189 NaN

Feature list

Irrelevant 
features



We train a RandomForestClassifier model in sklearn.ensemble on 

selected features

Metrics (sklearn.metrics): 

Method Feature Count Accuracy AUROC Precision Recall F1 Score

All Features 30 0.967262 0.964912 0.931818 0.97619 0.953488

Performance evaluation



Feature Selection

Filter Methods



Filter methods

● Correlation
● Univariate feature 

selection

Feature Selection Supervised

Filter Methods

Wrapper Methods

Embedded Methods



● Correlated features are usually redundant

○ Remove them!

Popular filter methods:

● Pearson Correlation

○ Between features, and between the features and the label

● Univariate Feature Selection

Filter methods



Set of All
Features

Selecting the
Best Subset

ML Model Performance

Filter methods



● Shows how features are related:

○ To each other (Bad)

○ And with target variable (Good)

● Falls in the range [-1, 1]

○  1  High positive correlation

○ -1  High negative correlation

Fe
at

u
re

s 
+

 t
ar

ge
t

Features + target
-0.2

1.0

Correlation matrix



Feature comparison statistical tests

● Pearson’s correlation: Linear relationships

● Kendall Tau Rank Correlation Coefficient: Monotonic relationships & 

small sample size

● Spearman’s Rank Correlation Coefficient: Monotonic relationships

Other methods:

● Mutual information

● F-Test

● Chi-Squared test



# Pearson’s correlation by default

cor = df.corr() 

plt.figure(figsize=(20,20))

# Seaborn

sns.heatmap(cor, annot=True, cmap=plt.cm.PuBu) 

plt.show()

Fe
at

u
re

s 
+

 t
ar

ge
t

Features + target
-0.2

1.0

Determine correlation



Selecting features

cor_target = abs(cor["diagnosis_int"])

# Selecting highly correlated features as potential features to eliminate

relevant_features = cor_target[cor_target>0.2]



Method Feature Count Accuracy AUROC Precision Recall F1 Score

All Features 30 0.967262 0.964912 0.931818 0.97619 0.953488

Correlation 21 0.974206 0.973684 0.953488 0.97619 0.964706

Best Result

Performance table



SKLearn Univariate feature selection routines:

1. SelectKBest  

2. SelectPercentile

3. GenericUnivariateSelect 

Statistical tests available:

● Regression:  f_regression, mutual_info_regression

● Classification:  chi2, f_classif, mutual_info_classif

Univariate feature selection in SKLearn

https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.SelectKBest.html#sklearn.feature_selection.SelectKBest
https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.SelectPercentile.html#sklearn.feature_selection.SelectPercentile
https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.GenericUnivariateSelect.html#sklearn.feature_selection.GenericUnivariateSelect
https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.f_regression.html#sklearn.feature_selection.f_regression
https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.mutual_info_regression.html#sklearn.feature_selection.mutual_info_regression
https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.chi2.html#sklearn.feature_selection.chi2
https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.f_classif.html#sklearn.feature_selection.f_classif
https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.mutual_info_classif.html#sklearn.feature_selection.mutual_info_classif


SelectKBest implementation
def univariate_selection():

 

 

 

  

  

X_train, X_test, Y_train, Y_test = train_test_split(X, Y,

                                            test_size = 0.2,stratify=Y, random_state = 123)

X_train_scaled = StandardScaler().fit_transform(X_train)

X_test_scaled = StandardScaler().fit_transform(X_test)

min_max_scaler = MinMaxScaler()

Scaled_X = min_max_scaler.fit_transform(X_train_scaled)

selector = SelectKBest(chi2, k=20) # Use Chi-Squared test
X_new = selector.fit_transform(Scaled_X, Y_train)

feature_idx = selector.get_support()

feature_names = df.drop("diagnosis_int",axis = 1 ).columns[feature_idx]

return feature_names



Method Feature Count Accuracy AUROC Precision Recall F1 Score

All Features 30 0.967262 0.964912 0.931818 0.97619 0.953488

Correlation 21 0.974206 0.973684 0.953488 0.97619 0.964706

Univariate (Chi2) 20 0.960317 0.95614 0.91111 0.97619 0.94252

Best Result

Performance table



Wrapper Methods

Feature Selection



Wrapper methods

● Forward elimination
● Backward elimination
● Recursive feature 

elimination

Feature Selection Supervised

Filter Methods

Wrapper Methods

Embedded Methods

● Correlation
● Univariate feature 

selection



Set of All
Features

Performance

Select best subset

Generate a 
Subset

ML Model

Wrapper methods



Popular wrapper methods

1. Forward Selection

2. Backward Selection

3. Recursive Feature Elimination

Wrapper methods



1. Iterative, greedy method

2. Starts with 1 feature

3. Evaluate  model performance when adding each of the additional 
features, one at a time

4. Add next feature that gives the best performance

5. Repeat until there is no improvement

Forward selection



1. Start with all features

2. Evaluate model performance when removing each of the included 
features, one at a time

3. Remove next feature that gives the best performance

4. Repeat until there is no improvement

Backward elimination



1. Select a model to use for evaluating feature importance

2. Select the desired number of features

3. Fit the model

4. Rank features by importance

5. Discard  least important features

6. Repeat until the desired number of features remains

Recursive feature elimination (RFE)



Recursive feature elimination
def run_rfe():

   X_train, X_test, y_train, y_test = train_test_split(X,Y, test_size = 0.2, random_state = 0)

   

  X_train_scaled = StandardScaler().fit_transform(X_train)

  X_test_scaled = StandardScaler().fit_transform(X_test)

  model = RandomForestClassifier(criterion='entropy', random_state=47)

  

  

  rfe = RFE(model, 20)

  rfe = rfe.fit(X_train_scaled, y_train)

    feature_names = df.drop("diagnosis_int",axis = 1 ).columns[rfe.get_support()]

  return feature_names

rfe_feature_names = run_rfe()

rfe_eval_df = evaluate_model_on_features(df[rfe_feature_names], Y)

rfe_eval_df.head()



Method Feature Count Accuracy AUROC Precision Recall F1 Score

All Features 30 0.96726 0.96491 0.931818 0.97619 0.953488

Correlation 21 0.97420 0.97368 0.9534883 0.97619 0.964705

Univariate (Chi2) 20 0.96031 0.95614 0.91111 0.97619 0.94252

Recursive Feature 
Elimination

20 0.97420 0.97368 0.953488 0.97619 0.964706

Best Result

Performance table



Embedded Methods

Feature Selection



Embedded methods

● L1 regularization
● Feature importance

Feature Selection Supervised

Filter Methods

Wrapper Methods

Embedded Methods

● Correlation
● Univariate feature 

selection

● Forward elimination
● Backward elimination
● Recursive feature 

elimination



● Assigns scores for each feature in data

● Discard features scored lower by feature importance

Feature importance



● Feature Importance class is in-built in Tree Based Models (eg., 
RandomForestClassifier)

● Feature importance is available as a property 
feature_importances_

● We can then use SelectFromModel to select features from the trained 
model based on assigned feature importances.

Feature importance with SKLearn



Extracting feature importance

def feature_importances_from_tree_based_model_():

 
  X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size = 0.2,

                                              stratify=Y, random_state = 123)

  

model = RandomForestClassifier()

model = model.fit(X_train,Y_train)

 
 feat_importances = pd.Series(model.feature_importances_, index=X.columns)

 feat_importances.nlargest(10).plot(kind='barh')

 plt.show()

 return model



0 0.10.05 0.15

Feature importance plot



def select_features_from_model(model):

  

  model = SelectFromModel(model, prefit=True, threshold=0.012)

  
  feature_idx = model.get_support()

  feature_names = df.drop("diagnosis_int",1 ).columns[feature_idx]

  return feature_names

Select features based on importance



# Calculate and plot feature importances

model = feature_importances_from_tree_based_model_()

# Select features based on feature importances

feature_imp_feature_names = select_features_from_model(model)

Tying together and evaluation



Performance table

Method Feature Count Accuracy ROC Precision Recall F1 Score

All Features 30 0.96726 0.964912 0.931818 0.9761900 0.953488

Correlation 21 0.97420 0.973684 0.953488 0.9761904 0.964705

Univariate Feature 
Selection

20 0.96031 0.95614 0.91111 0.97619 0.94252

Recursive Feature 
Elimination

20 0.9742 0.973684 0.953488 0.97619 0.964706

Feature Importance 14 0.96726 0.96491 0.931818 0.97619 0.953488

Best Result



Review

● Intro to Preprocessing

● Feature Engineering

● Preprocessing Data at Scale
○ TensorFlow Transform

● Feature Spaces

● Feature Selection
○ Filter Methods
○ Wrapper Methods
○ Embedded Methods


