
Copyright Notice
These slides are distributed under the Creative Commons License.

DeepLearning.AI makes these slides available for educational purposes. You may not use or
distribute these slides for commercial purposes. You may make copies of these slides and
use or distribute them for educational purposes as long as you cite DeepLearning.AI as the
source of the slides.

For the rest of the details of the license, see
https://creativecommons.org/licenses/by-sa/2.0/legalcode

http://deeplearning.ai/
http://deeplearning.ai/
https://creativecommons.org/licenses/by-sa/2.0/legalcode

Feature Engineering,
Transformation and Selection

Welcome

Feature Engineering

Introduction to
Preprocessing

“Coming up with features is difficult,
time-consuming, and requires expert knowledge.
Applied machine learning often requires careful
engineering of the features and dataset.”

— Andrew Ng

Outline

● Squeezing the most out of data

● The art of feature engineering

● Feature engineering process

● How feature engineering is done in a typical ML pipeline

Squeezing the most out of data

● Making data useful before training a model

● Representing data in forms that help models learn

● Increasing predictive quality

● Reducing dimensionality with feature engineering

Tune Objective
Function

Make New
Features

Launch and
Reiterate

Combine Features

Feature
Engineering

Art of feature engineering

Feature
Engineering

Whole Dataset

Batch processing

During training

Each Request

Real-time
processing

During serving

Typical ML pipeline

● Feature engineering can be difficult and time consuming, but also very

important to success

● Squeezing the most out of data through feature engineering enables

models to learn better

● Concentrating predictive information in fewer features enables more

efficient use of compute resources

● Feature engineering during training must also be applied correctly

during serving

Key points

Feature Engineering

Preprocessing
Operations

Outline

● Main preprocessing operations

● Mapping raw data into features

● Mapping numeric values

● Mapping categorical values

● Empirical knowledge of data

Main preprocessing operations

Data cleansing Feature tuning Representation
transformation

Feature
extraction

Feature
construction

Raw Data

0: {
 house_info : {
 num_rooms : 6
 num_bedrooms : 3
 street_name: “Shorebird Way”
 num_basement_rooms: -1
…
 }
} Raw data doesn’t

come to us as feature
vectors

Feature Vector

 Feature Engineering

[
6.0,
1.0,
0.0,
0.0,
9.321,
-2.20,
1.01,
0.0,
…,
]

Process of creating features
from raw data is feature
engineering

Mapping raw data into features

Mapping categorical values

Street names
{'Charleston Road', 'North Shoreline Boulevard', 'Shorebird Way', 'Rengstorff Avenue'}

Raw Data Feature Vector

0: {
 house_info : {
 num_rooms : 6
 num_bedrooms : 3
 street_name: “Shorebird Way”
 num_basement_rooms: -1
…
 }
}

street_name feature=
[0,0, …, 0, 1, 0, …, 0]

One-hot encoding
This has a 1 for “Shorebird
way” and 0 for all others

String Features can be
handled with one-hot
encoding

 Feature Engineering

Categorical Vocabulary
From a vocabulary list

vocabulary_feature_column = tf.feature_column.categorical_column_with_vocabulary_list(

 key=feature_name,

 vocabulary_list=["kitchenware", "electronics", "sports"])

From a vocabulary file

vocabulary_feature_column = tf.feature_column.categorical_column_with_vocabulary_file(

 key=feature_name,

 vocabulary_file="product_class.txt",

 vocabulary_size=3)

Text - stemming, lemmatization, TF-IDF, n-grams,
embedding lookup

Images - clipping, resizing, cropping, blur, Canny filters,

Sobel filters, photometric distortions

Empirical knowledge of data

● Data preprocessing: transforms raw data into a clean and

training-ready dataset

● Feature engineering maps:
○ Raw data into feature vectors
○ Integer values to floating-point values
○ Normalizes numerical values
○ Strings and categorical values to vectors of numeric values
○ Data from one space into a different space

Key points

Feature Engineering

Feature Engineering
Techniques

● Feature Scaling

● Normalization and Standardization

● Bucketizing / Binning

● Other techniques

Outline

Numerical Range

● Scaling
● Normalizing
● Standardizing

Grouping
● Bucketizing
● Bag of words

Feature engineering techniques

● Converts values from their natural range into a

prescribed range

○ E.g. Grayscale image pixel intensity scale is [0,255]

usually rescaled to [-1,1]
image = (image - 127.5) / 127.5

● Benefits

○ Helps neural nets converge faster

○ Do away with NaN errors during training

○ For each feature, the model learns the right weights

Scaling

Normalization

10 10000

0 1

Original Normalized

Normalization

-3σ -2σ -σ σ 2σ 3σ

● Z-score relates the number of standard

deviations away from the mean

● Example:

10 10000

-3σ +3σ

(z-score)

Standardization (z-score)

Original Standardized

Standardization (z-score)

Date Range Represented as...

< 1960 [1, 0, 0, 0]

1960 1980 2000
Bucket 0 Bucket 1 Bucket 2 Bucket 3

>= 1960 but < 1980 [0, 1, 0, 0]

>= 1980 but < 2000 [0, 0, 1, 0]

 >= 2000 [0, 0, 0, 1]

Bucketizing / Binning

Binning with Facets

Dimensionality
reduction in
embeddings

● Principal component analysis (PCA)
● t-Distributed stochastic neighbor embedding (t-SNE)
● Uniform manifold approximation and projection (UMAP)

Feature crossing

Other techniques

● Intuitive exploration of

high-dimensional data

● Visualize & analyze

● Techniques

○ PCA

○ t-SNE

○ UMAP

○ Custom linear projections

● Ready to play

@ projector.tensorflow.org

TensorFlow embedding projector

● Feature engineering:
○ Prepares, tunes, transforms, extracts and constructs features.

● Feature engineering is key for model refinement

● Feature engineering helps with ML analysis

Key points

Feature Engineering

Feature Crosses

Outline

● Feature crosses

● Encoding features

We can create many different

kinds of feature crosses

● [Day of week, Hour] => [Hour of week]

● [A X B]: multiplying the values of two features

● [A x B x C x D x E]: multiplying the values of 5 features

● Combines multiple features together into a new feature

● Encodes nonlinearity in the feature space, or encodes

the same information in fewer features

Feature crosses

● healthy trees

● sick trees

Classification
boundary

Encoding features

● healthy trees

● sick trees

Classification
boundary

Need for encoding non-linearity

Census dataset

● Feature crossing: synthetic feature encoding nonlinearity in feature

space.

● Feature coding: transforming categorical to a continuous variable.

Key points

Feature Transformation At Scale

Preprocessing Data
At Scale

Probably not ideal

Python Java

Example Gen

TensorFlow
Extended

TRAINING &
EVAL DATA

TENSORFLOW
SERVING

Statistics Gen

Trainer Evaluator Pusher

SchemaGen

Transform

Example
Validator

TENSORFLOW
JS

TENSORFLOW
LITE

ML Pipeline

● Inconsistencies in feature engineering

● Preprocessing granularity

● Pre-processing training dataset

● Optimizing instance-level transformations

● Summarizing the challenges

Outline

Real-world models:
 terabytes of data

Large-scale data
processing frameworks

 Consistent transforms
between training &

serving

Preprocessing data at scale

Training & serving code paths are different

Diverse deployments scenarios

Risks of introducing training-serving skews

Skews will lower the performance of your serving model

Mobile (TensorFlow Lite)

Server (TensorFlow Serving)

Web (TensorFlow JS)

Inconsistencies in feature engineering

Transformations

Instance-level Full-pass

Clipping Minimax

Multiplying Standard scaling

Expanding features Bucketizing

etc. etc.

Preprocessing granularity

Pre-processing training dataset

Pros Cons

Run-once Transformations reproduced at serving

Compute on entire dataset Slower iterations

When do you transform?

Transforming within the model

Pros Cons

Easy iterations Expensive transforms

Transformation guarantees Long model latency

Transformations per batch: skew

How about ‘within’ a model?

● For example, normalizing features by their average

● Access to a single batch of data, not the full dataset

● Ways to normalize per batch

○ Normalize by average within a batch

○ Precompute average and reuse it during normalization

Why transform per batch?

● Indirectly affect training efficiency

● Typically accelerators sit idle while the CPUs transform

● Solution:

○ Prefetching transforms for better accelerator efficiency

Optimizing instance-level transformations

● Balancing predictive performance

● Full-pass transformations on training data

● Optimizing instance-level transformations for better training efficiency

(GPUs, TPUs, …)

Summarizing the challenges

● Inconsistent data affects the accuracy of the results

● Need for scaled data processing frameworks to process large datasets

in an efficient and distributed manner

Key points

Preprocessing Data At Scale

TensorFlow Transform

● Going deeper

● Benefits of using TensorFlow Transform

● Applies feature transformations

● tf.Transform Analyzers

Outline

Transform

Input data Transformed
Data

Trained
Models

Trainer

Training Data Serving System

PIPELINE + METADATA STORAGE

Enter tf.Transform

Example Gen

TensorFlow
Extended

TRAINING &
EVAL DATA

TENSORFLOW
SERVING

Statistics Gen

Trainer Evaluator Pusher

SchemaGen

Transform

Example
Validator

TENSORFLOW
JS

TENSORFLOW
LITE

Inside TensorFlow Extended

ExampleGen SchemaGen

Transform

Trainer

Schema

Transformed
Data

 Code

Transform
Graph

Data● Applied during
training

● Embedded during
serving

Performance
optimizations

● User-provided
transform
(tf.Transform)

● Schema for parsing

tf.Transform layout

Beam
Preprocessing

Tf. Transform
API

Serving

Prediction

Model Training
TensorFlow Graph

Trained Model
Saved

M
o

d
el

Tf. Transform
TensorFlow Graph

Raw Inference
Request

Model Training
TensorFlow Graph

Processed Data

Training

Tf. Transform
TensorFlow Graph

Raw Data

tf. Transform: Going deeper

tf.Transform Analyzers

They behave like TensorFlow

Ops, but run only once during

training

For example:

tft.min computes the minimum
of a tensor over the training
dataset

How Transform applies feature transformations

Training Serving

● Emitted tf.Graph holds all necessary constants and transformations

● Focus on data preprocessing only at training time

● Works in-line during both training and serving

● No need for preprocessing code at serving time

● Consistently applied transformations irrespective of deployment

platform

Benefits of using tf.Transform

tf.Transform
Analyzers

Vocabulary

Scaling

Dimensionality
Reduction

Bucketizing

scale_to_z_score

scale_to_0_1

quantiles

apply_buckets

bag_of_words

tfidf

ngrams

pca

bucketize

Analyzers framework

def preprocessing_fn(inputs):

...

 for key in DENSE_FLOAT_FEATURE_KEYS:

 for key in VOCAB_FEATURE_KEYS:

 for key in BUCKET_FEATURE_KEYS:

outputs[key] = tft.scale_to_z_score(inputs[key])

 outputs[key] = tft.vocabulary(inputs[key], vocab_filename=key)

outputs[key] = tft.bucketize(inputs[key], FEATURE_BUCKET_COUNT)

tf.Transform preprocessing_fn

Commonly used imports

import tensorflow as tf

import apache_beam as beam

import apache_beam.io.iobase

import tensorflow_transform as tft

import tensorflow_transform.beam as tft_beam

Feature Transformation At Scale

Hello World
with tf.Transform

1

Data

Collect raw data

2

Define metadata

Prepare metadata for

the dataset using
DatasetMetadata

3

Transform

Define the preprocessing
function with

tf.Transform analyzers

Constant graph

Generate a constant

graph with the

required

transformations

4
Analyze

tf.Transform

Hello world with tf.Transform

Collect raw samples (Data)

[

{'x': 1, 'y': 1, 's': 'hello'},

{'x': 2, 'y': 2, 's': 'world'},

{'x': 3, 'y': 3, 's': 'hello'}

]

Inspect data and prepare metadata (Data)

from tensorflow_transform.tf_metadata import (

dataset_metadata, dataset_schema)

raw_data_metadata = dataset_metadata.DatasetMetadata(

 dataset_schema.from_feature_spec({

 'y': tf.io.FixedLenFeature([], tf.float32),

 'x': tf.io.FixedLenFeature([], tf.float32),

 's': tf.io.FixedLenFeature([], tf.string)

}))

Preprocessing data (Transform)

def preprocessing_fn(inputs):

"""Preprocess input columns into transformed columns."""

 x, y, s = inputs['x'], inputs['y'], inputs['s']

 x_centered = x - tft.mean(x)

 y_normalized = tft.scale_to_0_1(y)

 s_integerized = tft.compute_and_apply_vocabulary(s)

 x_centered_times_y_normalized = (x_centered * y_normalized)

Preprocessing data (Transform)
 return {

 'x_centered': x_centered,

 'y_normalized': y_normalized,

 's_integerized': s_integerized,

 'x_centered_times_y_normalized': x_centered_times_y_normalized,

 }

[1, 2, 3]

[1, 2, 3]

['hello', 'world',
'hello']

x

y

s

[-1.0, 0.0, 1.0]

[0.0, 0.5, 1.0]

[0, 1, 0]

[-0.0, 0.0, 1.0]

● x_centered

x - tft.mean(x)

● y_normalized

tft.scale_to_0_1(y)

● s_integerized

tft.compute_and_apply_vocabulary(s)

● x_centered * y_normalized

preprocessing_fn

TensorFlow OpsInputs Outputs

Tensors in… tensors out

Running the pipeline

 def main():

 with tft_beam.Context(temp_dir=tempfile.mkdtemp()):

 transformed_dataset, transform_fn = (

 (raw_data, raw_data_metadata) | tft_beam.AnalyzeAndTransformDataset(

 preprocessing_fn))

Running the pipeline

 transformed_data, transformed_metadata = transformed_dataset

 print('\nRaw data:\n{}\n'.format(pprint.pformat(raw_data)))

 print('Transformed data:\n{}'.format(pprint.pformat(transformed_data)))

if __name__ == '__main__':

 main()

Before transforming with tf.Transform

Raw data:

[{'s': 'hello', 'x': 1, 'y': 1},

 {'s': 'world', 'x': 2, 'y': 2},

 {'s': 'hello', 'x': 3, 'y': 3}]

After transform

[{'s_integerized': 0,

 'x_centered': -1.0,

 'x_centered_times_y_normalized': -0.0,

 'y_normalized': 0.0},

 {'s_integerized': 1,

 'x_centered': 0.0,

 'x_centered_times_y_normalized': 0.0,

 'y_normalized': 0.5},

 {'s_integerized': 0,

 'x_centered': 1.0,

 'x_centered_times_y_normalized': 1.0,

 'y_normalized': 1.0}]

After transforming with tf.Transform

● tf.Transform allows the pre-processing of input data and creating

features

● tf.Transform allows defining pre-processing pipelines and their

execution using large-scale data processing frameworks

● In a TFX pipeline, the Transform component implements feature

engineering using TensorFlow Transform

Key points

Feature Selection

Feature Spaces

Outline

● Introduction to Feature Spaces

● Introduction to Feature Selection

● Filter Methods

● Wrapper Methods

● Embedded Methods

● N dimensional space defined by your N features

● Not including the target label

Feature space (3D)
X

0 X
1

X
2

X

Scatter plot (2D)

X
1

X
0

Feature vector

Feature space

Feature space

No. of Rooms

X
0

Area

 X
1

Locality

X
2

Price

Y

5 1200 sq. ft New York $40,000

6 1800 sq. ft Texas $30,000

3D Feature Space

Y = f(X
0

, X
1

, X
2

)

f is your ML model acting on feature space X
0

, X
1

, X
2

x
0

x 1

Ideal

x
0

x 1

Realistic

x
0

x 1

Poor

2D Feature space - Classification

x
0

x 1

Model learns decision boundary

Boundary used to classify data points

Drawing decision boundary

● Train/Eval datasets representative of the serving dataset

○ Same numerical ranges

○ Same classes

○ Similar characteristics for image data

○ Similar vocabulary, syntax, and semantics for NLP data

Feature space coverage

● Data affected by: seasonality, trend, drift.

● Serving data: new values in features and labels.

● Continuous monitoring, key for success!

Ensure feature space coverage

Feature Selection

Feature Selection

 Feature selection

X X X

✅ ✅ ✅
All Features

 Useful features

● Identify features that best represent

the relationship

● Remove features that don’t influence

the outcome

● Reduce the size of the feature space

● Reduce the resource requirements

and model complexity

Feature selection

Reduce storage and I/O
requirements

Minimize training and
inference costs

Why is feature selection needed?

Feature selection methods

Feature Selection

Unsupervised

Supervised

1. Unsupervised

● Features-target variable relationship not considered

● Removes redundant features (correlation)

Unsupervised feature selection

2. Supervised

● Uses features-target variable relationship

● Selects those contributing the most

Supervised feature selection

Supervised methods

Wrapper Methods

Embedded Methods

Filter Methods

Feature Selection Supervised

Feature selection techniques on Breast
Cancer Dataset (Diagnostic)

Predicting whether tumour is benign or
malignant.

Practical example

id diagnosis radius-mean texture_mea
n

perimeter_
mean

area_mean smoothness
_mean

compactnes
s_mean

842302 M 17.99 10.38 122.8 1001.0 0.1184 0.2776

concavity_m
ean

concavepoin
ts_mean

symmetry_
mean

fractal_dime
nsion_mean

radius_se texture_se perimeter_s
e

area_se

0.3001 0.1471 0.2419 0.07871 1.095 0.9053 8.589 153.4

smoothness
_se

compactnes
s_se

concavity_se concavepoint
s_se

symmetry_
se

fractal_dime
nsion_se

radius-wors
t

texture_wor
st

0.0064 0.049 0.054 0.016 0.03 0.006 25.38 17.33

perimeter_w
orst

area_worst smoothness
_worst

compactness
_worst

concavity_
worst

concavepoin
ts_worst

symmetry_
worst

fractal_dime
nsion_worst

Unnamed:3
2

184.6 2019.0 0.1622 0.6656 0.7119 0.2654 0.4601 0.1189 NaN

Feature list

Irrelevant
features

We train a RandomForestClassifier model in sklearn.ensemble on

selected features

Metrics (sklearn.metrics):

Method Feature Count Accuracy AUROC Precision Recall F1 Score

All Features 30 0.967262 0.964912 0.931818 0.97619 0.953488

Performance evaluation

Feature Selection

Filter Methods

Filter methods

● Correlation
● Univariate feature

selection

Feature Selection Supervised

Filter Methods

Wrapper Methods

Embedded Methods

● Correlated features are usually redundant

○ Remove them!

Popular filter methods:

● Pearson Correlation

○ Between features, and between the features and the label

● Univariate Feature Selection

Filter methods

Set of All
Features

Selecting the
Best Subset

ML Model Performance

Filter methods

● Shows how features are related:

○ To each other (Bad)

○ And with target variable (Good)

● Falls in the range [-1, 1]

○ 1 High positive correlation

○ -1 High negative correlation

Fe
at

u
re

s
+

 t
ar

ge
t

Features + target
-0.2

1.0

Correlation matrix

Feature comparison statistical tests

● Pearson’s correlation: Linear relationships

● Kendall Tau Rank Correlation Coefficient: Monotonic relationships &

small sample size

● Spearman’s Rank Correlation Coefficient: Monotonic relationships

Other methods:

● Mutual information

● F-Test

● Chi-Squared test

Pearson’s correlation by default

cor = df.corr()

plt.figure(figsize=(20,20))

Seaborn

sns.heatmap(cor, annot=True, cmap=plt.cm.PuBu)

plt.show()

Fe
at

u
re

s
+

 t
ar

ge
t

Features + target
-0.2

1.0

Determine correlation

Selecting features

cor_target = abs(cor["diagnosis_int"])

Selecting highly correlated features as potential features to eliminate

relevant_features = cor_target[cor_target>0.2]

Method Feature Count Accuracy AUROC Precision Recall F1 Score

All Features 30 0.967262 0.964912 0.931818 0.97619 0.953488

Correlation 21 0.974206 0.973684 0.953488 0.97619 0.964706

Best Result

Performance table

SKLearn Univariate feature selection routines:

1. SelectKBest

2. SelectPercentile

3. GenericUnivariateSelect

Statistical tests available:

● Regression: f_regression, mutual_info_regression

● Classification: chi2, f_classif, mutual_info_classif

Univariate feature selection in SKLearn

https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.SelectKBest.html#sklearn.feature_selection.SelectKBest
https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.SelectPercentile.html#sklearn.feature_selection.SelectPercentile
https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.GenericUnivariateSelect.html#sklearn.feature_selection.GenericUnivariateSelect
https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.f_regression.html#sklearn.feature_selection.f_regression
https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.mutual_info_regression.html#sklearn.feature_selection.mutual_info_regression
https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.chi2.html#sklearn.feature_selection.chi2
https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.f_classif.html#sklearn.feature_selection.f_classif
https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.mutual_info_classif.html#sklearn.feature_selection.mutual_info_classif

SelectKBest implementation
def univariate_selection():

X_train, X_test, Y_train, Y_test = train_test_split(X, Y,

 test_size = 0.2,stratify=Y, random_state = 123)

X_train_scaled = StandardScaler().fit_transform(X_train)

X_test_scaled = StandardScaler().fit_transform(X_test)

min_max_scaler = MinMaxScaler()

Scaled_X = min_max_scaler.fit_transform(X_train_scaled)

selector = SelectKBest(chi2, k=20) # Use Chi-Squared test
X_new = selector.fit_transform(Scaled_X, Y_train)

feature_idx = selector.get_support()

feature_names = df.drop("diagnosis_int",axis = 1).columns[feature_idx]

return feature_names

Method Feature Count Accuracy AUROC Precision Recall F1 Score

All Features 30 0.967262 0.964912 0.931818 0.97619 0.953488

Correlation 21 0.974206 0.973684 0.953488 0.97619 0.964706

Univariate (Chi2) 20 0.960317 0.95614 0.91111 0.97619 0.94252

Best Result

Performance table

Wrapper Methods

Feature Selection

Wrapper methods

● Forward elimination
● Backward elimination
● Recursive feature

elimination

Feature Selection Supervised

Filter Methods

Wrapper Methods

Embedded Methods

● Correlation
● Univariate feature

selection

Set of All
Features

Performance

Select best subset

Generate a
Subset

ML Model

Wrapper methods

Popular wrapper methods

1. Forward Selection

2. Backward Selection

3. Recursive Feature Elimination

Wrapper methods

1. Iterative, greedy method

2. Starts with 1 feature

3. Evaluate model performance when adding each of the additional
features, one at a time

4. Add next feature that gives the best performance

5. Repeat until there is no improvement

Forward selection

1. Start with all features

2. Evaluate model performance when removing each of the included
features, one at a time

3. Remove next feature that gives the best performance

4. Repeat until there is no improvement

Backward elimination

1. Select a model to use for evaluating feature importance

2. Select the desired number of features

3. Fit the model

4. Rank features by importance

5. Discard least important features

6. Repeat until the desired number of features remains

Recursive feature elimination (RFE)

Recursive feature elimination
def run_rfe():

 X_train, X_test, y_train, y_test = train_test_split(X,Y, test_size = 0.2, random_state = 0)

 X_train_scaled = StandardScaler().fit_transform(X_train)

 X_test_scaled = StandardScaler().fit_transform(X_test)

 model = RandomForestClassifier(criterion='entropy', random_state=47)

 rfe = RFE(model, 20)

 rfe = rfe.fit(X_train_scaled, y_train)

 feature_names = df.drop("diagnosis_int",axis = 1).columns[rfe.get_support()]

 return feature_names

rfe_feature_names = run_rfe()

rfe_eval_df = evaluate_model_on_features(df[rfe_feature_names], Y)

rfe_eval_df.head()

Method Feature Count Accuracy AUROC Precision Recall F1 Score

All Features 30 0.96726 0.96491 0.931818 0.97619 0.953488

Correlation 21 0.97420 0.97368 0.9534883 0.97619 0.964705

Univariate (Chi2) 20 0.96031 0.95614 0.91111 0.97619 0.94252

Recursive Feature
Elimination

20 0.97420 0.97368 0.953488 0.97619 0.964706

Best Result

Performance table

Embedded Methods

Feature Selection

Embedded methods

● L1 regularization
● Feature importance

Feature Selection Supervised

Filter Methods

Wrapper Methods

Embedded Methods

● Correlation
● Univariate feature

selection

● Forward elimination
● Backward elimination
● Recursive feature

elimination

● Assigns scores for each feature in data

● Discard features scored lower by feature importance

Feature importance

● Feature Importance class is in-built in Tree Based Models (eg.,
RandomForestClassifier)

● Feature importance is available as a property
feature_importances_

● We can then use SelectFromModel to select features from the trained
model based on assigned feature importances.

Feature importance with SKLearn

Extracting feature importance

def feature_importances_from_tree_based_model_():

 X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size = 0.2,

 stratify=Y, random_state = 123)

model = RandomForestClassifier()

model = model.fit(X_train,Y_train)

 feat_importances = pd.Series(model.feature_importances_, index=X.columns)

 feat_importances.nlargest(10).plot(kind='barh')

 plt.show()

 return model

0 0.10.05 0.15

Feature importance plot

def select_features_from_model(model):

 model = SelectFromModel(model, prefit=True, threshold=0.012)

 feature_idx = model.get_support()

 feature_names = df.drop("diagnosis_int",1).columns[feature_idx]

 return feature_names

Select features based on importance

Calculate and plot feature importances

model = feature_importances_from_tree_based_model_()

Select features based on feature importances

feature_imp_feature_names = select_features_from_model(model)

Tying together and evaluation

Performance table

Method Feature Count Accuracy ROC Precision Recall F1 Score

All Features 30 0.96726 0.964912 0.931818 0.9761900 0.953488

Correlation 21 0.97420 0.973684 0.953488 0.9761904 0.964705

Univariate Feature
Selection

20 0.96031 0.95614 0.91111 0.97619 0.94252

Recursive Feature
Elimination

20 0.9742 0.973684 0.953488 0.97619 0.964706

Feature Importance 14 0.96726 0.96491 0.931818 0.97619 0.953488

Best Result

Review

● Intro to Preprocessing

● Feature Engineering

● Preprocessing Data at Scale
○ TensorFlow Transform

● Feature Spaces

● Feature Selection
○ Filter Methods
○ Wrapper Methods
○ Embedded Methods

