
Copyright Notice
These slides are distributed under the Creative Commons License.

DeepLearning.AI makes these slides available for educational purposes. You may not use or
distribute these slides for commercial purposes. You may make copies of these slides and
use or distribute them for educational purposes as long as you cite DeepLearning.AI as the
source of the slides.

For the rest of the details of the license, see
https://creativecommons.org/licenses/by-sa/2.0/legalcode

http://deeplearning.ai/
http://deeplearning.ai/
https://creativecommons.org/licenses/by-sa/2.0/legalcode

Collecting, Labeling, and
Validating Data

Welcome

“Data is the hardest part of ML and the most important piece to get right...
Broken data is the most common cause of problems in production ML systems”
- Scaling Machine Learning at Uber with Michelangelo - Uber

The importance of data

“No other activity in the machine learning life cycle has a higher return on
investment than improving the data a model has access to.”
- Feast: Bridging ML Models and Data - Gojek

https://eng.uber.com/scaling-michelangelo/
https://blog.gojekengineering.com/feast-bridging-ml-models-and-data-efd06b7d1644

Introduction to Machine
Learning Engineering

for Production

Overview

Outline

● Machine learning (ML) engineering for production: overview

● Production ML = ML development + software development

● Challenges in production ML

Yields

Data Training

Evaluation

Traditional ML modeling

Production ML systems require so much more

Configuration

Data Verification

Feature Extraction Process Management Tools

Analysis Tools

Machine Resource
Management

Serving
Infrastructure

Monitoring

Data Collection

ML Code

Academic/Research ML Production ML

Static Dynamic - Shifting

Optimal tuning and training Continuously assess and retrain

Highest overall accuracy Fast inference, good interpretability

High accuracy algorithm Entire system

Very important Crucial

Data

Model training

Priority for design

Challenge

Fairness

ML modeling vs production ML

Machine learning
development

Modern software
development+

Production machine learning

Managing the entire life cycle of data

● Labeling

● Feature space coverage

● Minimal dimensionality

● Maximum predictive data

● Fairness

● Rare conditions

Accounts for:

Modern software development

● Scalability

● Extensibility

● Configuration

● Consistency & reproducibility

● Safety & security

● Modularity

● Testability

● Monitoring

● Best practices

Production machine learning system

Define
Project

Define data
and establish

baseline

Label and
organize

data

Select and
train model

Perform error
analysis

Deploy in
production

Monitor and
maintain
system

Scoping Data Modeling Deployment

New data

● Build integrated ML systems

● Continuously operate it in production

● Handle continuously changing data

● Optimize compute resource costs

Challenges in production grade ML

Introduction to Machine
Learning Engineering

for Production

ML Pipelines

● ML Pipelines

● Directed Acyclic Graphs and Pipeline Orchestration Frameworks

● Intro to TensorFlow Extended (TFX)

Outline

Infrastructure for

automating, monitoring, and maintaining

model training and deployment

ML pipelines

Scoping Data Modeling Deployment

New data

CD Foundation MLOps reference architecture

18

Production ML infrastructure

● A directed acyclic graph (DAG) is a directed graph that has no cycles

● ML pipeline workflows are usually DAGs

● DAGs define the sequencing of the tasks to be performed, based on their

relationships and dependencies.

Scoping Data Modeling Deployment

Directed acyclic graphs

● Responsible for scheduling the various components in

an ML pipeline DAG dependencies

● Help with pipeline automation

● Examples: Airflow, Argo, Celery, Luigi, Kubeflow

Configuration

Data
Verification

Feature Extraction Process Management
Tools

Analysis Tools

Machine
Resource

Management

Serving
Infrastructure

Monitoring

Data Collection

ML Code

Pipeline orchestration frameworks

TensorFlow Extended (TFX)

End-to-end platform for deploying production ML pipelines

Sequence of components that are designed for scalable, high-performance

machine learning tasks

Data
Ingestion

Data
Validation

Feature
Engineering

Train
Model

Validate
Model

Push if
good

Serve
Model

Libraries

Components

Bulk Inference

Tuner InfraValidator

DATA
INGESTION

TENSORFLOW
DATA VALIDATION

TENSORFLOW
TRANSFORM

ESTIMATOR OR
KERAS MODEL

TENSORFLOW
MODEL ANALYSIS

TENSORFLOW
SERVING

VALIDATION
OUTCOMES

ExampleGen

Example
Validator

SchemaGen

StatisticsGen

Transform Trainer Evaluator Pusher

Model Server

TFX production components

Data
Ingestion

Data
Validation

Feature
Engineering

Train
Model

Validate
Model

Push if
good

Serve
Model

TFX Hello World

Key points

● Production ML pipelines: automating, monitoring, and maintaining end-to-end processes

● Production ML is much more than just ML code

○ ML development + software development

● TFX is an open-source end-to-end ML platform

Scoping Data Modeling Deployment

New data

Collecting Data

Importance of Data

● Importance of data quality

● Data pipeline: data collection, ingestion and preparation

● Data collection and monitoring

Outline

“Data is the hardest part of ML and the most important piece to get right... Broken data is the most

common cause of problems in production ML systems”

- Scaling Machine Learning at Uber with Michelangelo - Uber

The importance of data

“No other activity in the machine learning life cycle has a higher return on investment than improving

the data a model has access to.”

- Feast: Bridging ML Models and Data - Gojek

https://eng.uber.com/scaling-michelangelo/
https://blog.gojekengineering.com/feast-bridging-ml-models-and-data-efd06b7d1644

ML: Data is a first class citizen

● Software 1.0

● Software 2.0

○ Explicit instructions to the computer

○ Specify some goal on the behavior of a program

○ Find solution using optimization techniques

○ Good data is key for success

○ Code in Software = Data in ML

Software 1.0

Software 2.0

Pro
gr

am
 C

om
ple

xi
ty

● Models aren’t magic

● Meaningful data:

○ maximize predictive content

○ remove non-informative data

○ feature space coverage

Everything starts with data

Garbage in, garbage out

● Data collection
● Data ingestion
● Data formatting
● Feature engineering
● Feature extraction

Define
Project

Define data
and establish

baseline

Label and
organize

data

Select and
train model

Perform error
analysis

Deploy in
production

Monitor and
maintain
system

Scoping Data Modeling Deployment

Data pipeline

● Downtime
● Errors
● Distributions

shifts
● Data failure
● Service failure

Define
Project

Define data
and establish

baseline

Label and
organize

data

Select and
train model

Perform error
analysis

Deploy in
production

Monitor and
maintain
system

Scoping Data Modeling Deployment

Data collection and monitoring

Key Points

● Understand users, translate user needs into data problems

● Ensure data coverage and high predictive signal

● Source, store and monitor quality data responsibly

Collecting Data

Example Application:
Suggesting Runs

 Example application: Suggesting runs

Users Runners

User Need Run more often

User Actions Complete run using the app

ML System Output
● What routes to suggest

● When to suggest them

ML System Learning

● Patterns of behaviour around accepting run prompts

● Completing runs

● Improving consistency

 Key considerations

● Data availability and collection

○ What kind of/how much data is available?

○ How often does the new data come in?

○ Is it annotated?

■ If not, how hard/expensive is it to get it labeled?

● Translate user needs into data needs

○ Data needed

○ Features needed

○ Labels needed

Runner ID Run Runner Time Elevation Fun

AV3DE Boston Marathon 03:40:32 1,300 ft Low

X8KGF Seattle Oktoberfest
5k

00:35:40 0 ft High

BH9IU Houston
Half-marathon

02:01:18 200 ft Medium

FEATURES

LA
B

E
LS

E
X

A
M

P
LE

S
 Example dataset

● Identify data sources

● Check if they are refreshed

● Consistency for values, units, & data types

● Monitor outliers and errors

Get to know your data

● Inconsistent formatting

○ Is zero “0”, “0.0”, or an indicator of a missing measurement

● Compounding errors from other ML Models

● Monitor data sources for system issues and outages

Dataset issues

● Intuition about data value can be misleading

○ Which features have predictive value and which ones do

not?

● Feature engineering helps to maximize the predictive signals

● Feature selection helps to measure the predictive signals

Measure data effectiveness

Data Needed

● Running data from the app

● Demographic data

● Local geographic data

Translate user needs into data needs

Features Needed

● Runner demographics

● Time of day

● Run completion rate

● Pace

● Distance ran

● Elevation gained

● Heart rate

Translate user needs into data needs

Labels Needed

● Runner acceptance or rejection of app suggestions

● User generated feedback regarding why suggestion was
rejected

● User rating of enjoyment of recommended runs

Translate user needs into data needs

Key points

● Understand your user, translate their needs into data problems

○ What kind of/how much data is available

○ What are the details and issues of your data

○ What are your predictive features

○ What are the labels you are tracking

○ What are your metrics

Collecting Data

Responsible Data:
Security, Privacy &

Fairness

● Data Sourcing

● Data Security and User Privacy

● Bias and Fairness

Outline

Example: classifier trained on the Open Images dataset

Avoiding problematic biases in datasets

Source Data Responsibly

Build synthetic
dataset

Open source
dataset

Web scraping

Build your own
dataset

Collect live data

● Data collection and management isn’t just about your

model

○ Give user control of what data can be collected

○ Is there a risk of inadvertently revealing user data?

● Compliance with regulations and policies (e.g. GDPR)

Data security and privacy

● Protect personally identifiable information

○ Aggregation - replace unique values with summary
value

○ Redaction - remove some data to create less
complete picture

Users privacy

How ML systems can fail users

● Representational harm

● Opportunity denial

● Disproportionate product failure

● Harm by disadvantage

Fair Accountable Transparent Explainable

● Make sure your models are fair

○ Group fairness, equal accuracy

● Bias in human labeled and/or collected

data

● ML Models can amplify biases

Commit to fairness

 Biased data representation

● Accurate labels are necessary for supervised learning

● Labeling can be done by:

○ Automation (logging or weak supervision)

○ Humans (aka “Raters”, often semi-supervised)

Reducing bias: Design fair labeling systems

Types of human raters

Raters

Subject matter
experts

Generalists

crowdsourcing tools
Specialized tools, e.g. medical Image

labelling

Your Users

Derived labels, e.g. tagging
photos

● Ensure rater pool diversity

● Investigate rater context and incentives

● Evaluate rater tools

● Manage cost

● Determine freshness requirements

Key points

Labeling Data

Case Study: Degraded
Model Performance

You’re an Online Retailer
Selling Shoes ...

Your model predicts
click-through rates
(CTR), helping you decide
how much inventory to
order

When suddenly

Your AUC and prediction accuracy
have dropped on men’s dress shoes!

Why?

How do we know that we
have a problem?

Case study: taking action

● How to detect problems early on?

● What are the possible causes?

● What can be done to solve these?

What causes problems?

Kinds of problems:

● Fast - example: bad sensor, bad software update

● Slow - example: drift

• Trend and seasonality
• Distribution of features changes
• Relative importance of features changes

Data changes

• Styles change
• Scope and processes change
• Competitors change
• Business expands to other geos

World changes

Gradual problems

Data collection problem Systems problem

• Bad sensor/camera
• Bad log data
• Moved or disabled

sensors/cameras

• Bad software update
• Loss of network connectivity
• System down
• Bad credentials

Sudden problems

Why “Understand” the model?

● Mispredictions do not have uniform cost to your business

● The data you have is rarely the data you wish you had

● Model objective is nearly always a proxy for your business
objectives

● Some percentage of your customers may have a bad experience

The real world does not stand still!

Labeling Data

Data and Concept
Change in

Production ML

● Detecting problems with deployed models

○ Data and concept change

● Changing ground truth

○ Easy problems

○ Harder problems

○ Really hard problems

Outline

● Data and scope changes

● Monitor models and validate data to find problems early

● Changing ground truth: label new training data

Detecting problems with deployed models

● Ground truth changes slowly (months, years)

● Model retraining driven by:
○ Model improvements, better data
○ Changes in software and/or systems

● Labeling
○ Curated datasets
○ Crowd-based

Easy problems

● Ground truth changes faster (weeks)

● Model retraining driven by:
○ Declining model performance
○ Model improvements, better data
○ Changes in software and/or system

● Labeling
○ Direct feedback
○ Crowd-based

Harder problems

● Ground truth changes very fast (days, hours, min)

● Model retraining driven by:
○ Declining model performance
○ Model improvements, better data
○ Changes in software and/or system

● Labeling
○ Direct feedback
○ Weak supervision

Really hard problems

● Model performance decays over time

○ Data and Concept Drift

● Model retraining helps to improve performance

○ Data labeling for changing ground truth and scarce labels

Key points

Labeling Data

Process Feedback and
Human Labeling

Variety of Methods

○ Process Feedback (Direct Labeling)

○ Human Labeling

○ Semi-Supervised Labeling

○ Active Learning

○ Weak Supervision

○ Semi-Supervised Labeling

○ Active Learning

○ Weak Supervision

Practice later as advanced
labeling methods

Data labeling

Process Feedback

Human Labeling

Example: Actual vs predicted click-through

Example: Cardiologists labeling MRI images

Data labeling

● Using business/organisation available data

● Frequent model retraining

● Labeling ongoing and critical process

● Creating a training datasets requires labels

Why is labeling important in production ML?

Direct labeling: continuous creation of training dataset

Features from
inference requests

Labels from
monitoring
predictions

Join results with
inference requests

Similar to reinforcement learning
rewards

Process feedback - advantages

● Training dataset continuous creation

● Labels evolve quickly

● Captures strong label signals

Process feedback - disadvantages

● Hindered by inherent nature of the problem

● Failure to capture ground truth

● Largely bespoke design

Process feedback - Open-Source log analysis tools

Logstash
Free and open source data processing pipeline

● Ingests data from a multitude of sources
● Transforms it
● Sends it to your favorite "stash."

Fluentd

Open source data collector
Unify the data collection and consumption

Google Cloud Logging
● Data and events from Google Cloud and AWS
● BindPlane. Logging: application components, on-premise and hybrid

cloud systems
● Sends it to your favorite "stash"

AWS ElasticSearch

Azure Monitor

Cloud Log Analysis

Process feedback - Cloud log analytics

Human labeling

People (“raters”) to examine data and assign labels manually

Raw data Unlabeled and ambiguous data
is sent to raters for annotation

A training data set is
ready for use

Human labeling - Methodology

Unlabeled data is collected

Human “raters” are recruited

Instructions to guide raters are created

Labels are collected and conflicts resolved

Data is divided and assigned to raters

Human labeling - advantages

● More labels

● Pure supervised learning

Human labeling - Disadvantages

Quality consistency: Many datasets

difficult for human labeling

Slow

Expensive

Small dataset curation

Why is human labeling a problem?

Slow, difficult and
expensive

MRI: high cost for specialist labeling

Single rater: limited #examples per day

Recruitment is slow and expensive

● Various methods of data labeling

○ Process feedback

○ Human labeling

● Advantages and disadvantages of both

Key points

Validating Data

Detecting Data Issues

● Data issues

○ Drift and skew

■ Data and concept Drift

■ Schema Skew

■ Distribution Skew

● Detecting data issues

Outline

Drift

Changes in data over time, such as data collected once

a day

Skew

Difference between two static versions, or different

sources, such as training set and serving set

Drift and skew

Typical ML pipeline

Data

Batch processing

Request

Real-time
processing

During training During serving

Model Decay : Data drift

Update

Performance decay : Concept drift

Training

Serving

● Detecting schema skew
○ Training and serving data do not conform to the same

schema

● Detecting distribution skew
○ Dataset shift → covariate or concept shift

● Requires continuous evaluation

Detecting data issues

Dataset shift Training Serving

Joint

Conditional

Marginal

Covariate shift

Concept shift

Detecting distribution skew

Skew detection workflow

Training data

Baseline stats Schema

Serving data

Stats

Validate statistics

Detect anomalies

Alert and analyze

Validating Data

TensorFlow
Data Validation

● Understand, validate, and monitor ML data at
scale

● Used to analyze and validate petabytes of data at
Google every day

● Proven track record in helping TFX users maintain
the health of their ML pipelines

TensorFlow Data Validation (TFDV)

TFDV capabilities

● Generates data statistics and browser visualizations

● Infers the data schema

● Performs validity checks against schema

● Detects training/serving skew

1. Schema Skew

2. Feature Skew

3. Distribution Skew

Training data

Baseline stats Schema

Serving data

Stats

Validate statistics

Detect anomalies

Alert and analyze

Skew detection - TFDV

● Supported for categorical features

● Expressed in terms of L-infinity distance (Chebyshev Distance):

● Set a threshold to receive warnings

2 2 2 2 2

2 1 1 1 2

2 1 1 2

2 1 1 1 2

2 2 2 2 2

Skew - TFDV

Serving and training data don’t conform to same schema:

● For example, int != float

Schema skew

Training feature values are different than the serving feature
values:

● Feature values are modified between training and serving

time

● Transformation applied only in one of the two instances

Feature skew

Distribution of serving and training dataset is significantly
different:

● Faulty sampling method during training

● Different data sources for training and serving data

● Trend, seasonality, changes in data over time

Distribution skew

● TFDV: Descriptive statistics at scale with the embedded facets visualizations

● It provides insight into:

○ What are the underlying statistics of your data

○ How does your training, evaluation, and serving dataset statistics compare

○ How can you detect and fix data anomalies

Key points

● Differences between ML modeling and a production ML system

● Responsible data collection for building a fair production ML system

● Process feedback and human labeling

● Detecting data issues

Practice data validation with TFDV in this week’s exercise notebook

Test your skills with the programming assignment

Wrap up

