Copyright Notice

These slides are distributed under the Creative Commons License.

<u>DeepLearning.Al</u> makes these slides available for educational purposes. You may not use or distribute these slides for commercial purposes. You may make copies of these slides and use or distribute them for educational purposes as long as you cite <u>DeepLearning.Al</u> as the source of the slides.

For the rest of the details of the license, see <u>https://creativecommons.org/licenses/by-sa/2.0/legalcode</u>

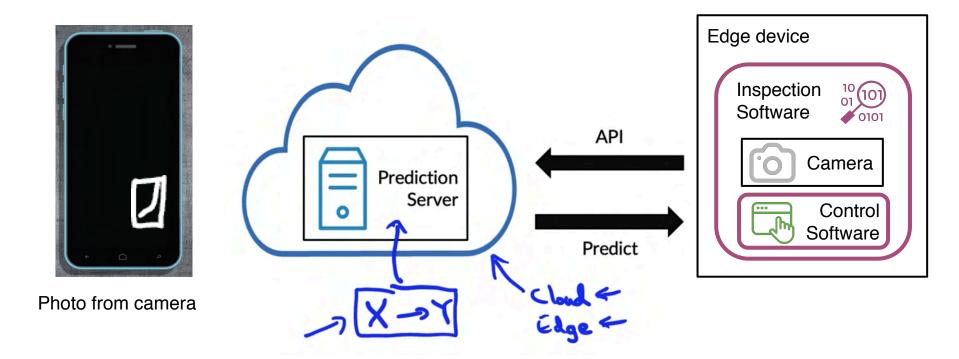
C1W1 Slides

DeepLearning.Al

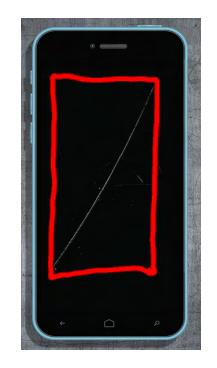
The Machine Learning Project Lifecycle

Welcome

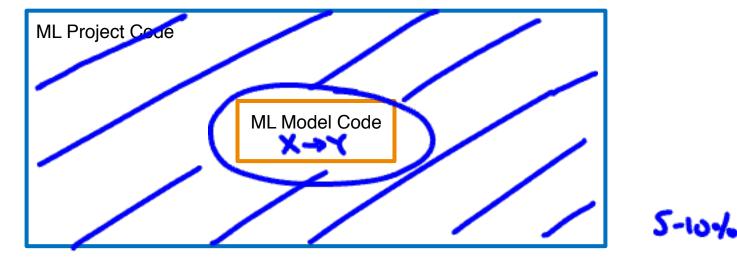
Deployment example



Visual inspection example

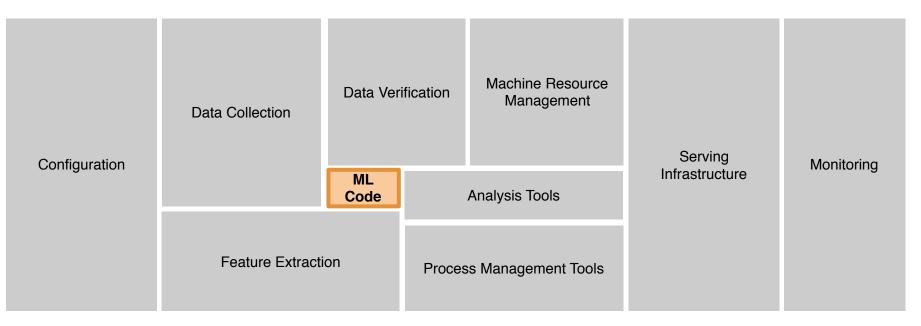


ML in production



"POC to Production Gap"

The requirements surrounding ML infrastructure

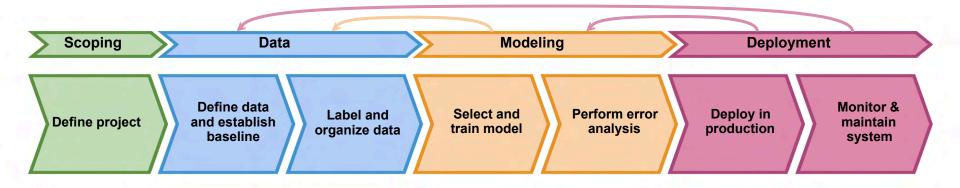


[D. Sculley et. al. NIPS 2015: Hidden Technical Debt in Machine Learning Systems

The Machine Learning Project Lifecycle

Steps of an ML project

The ML project lifecycle



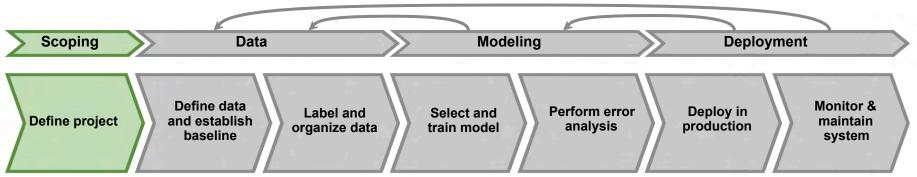
X->Y

DeepLearning.Al

The Machine Learning Project Lifecycle

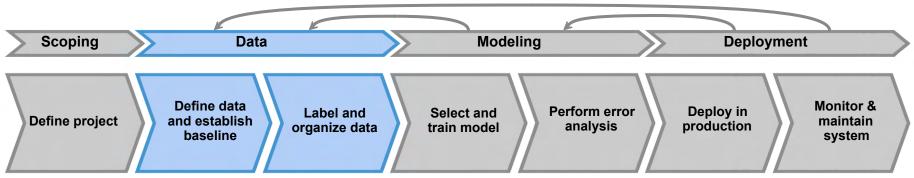
Case study: speech recognition

Speech recognition: Scoping stage



- Decide to work on speech recognition for voice search.
- Decide on key metrics:
 - Accuracy, latency, throughput
- Estimate resources and timeline

Speech recognition: Data stage

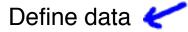


"Um, today's weather"

"Today's weather"

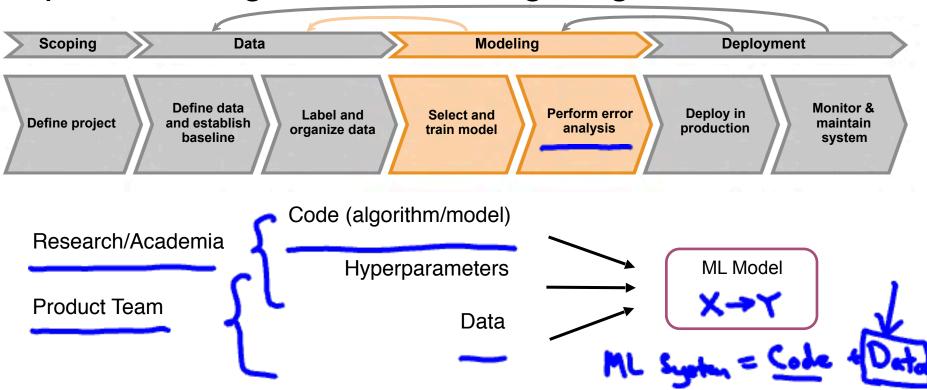
InOns 3

"Um... today's weather"

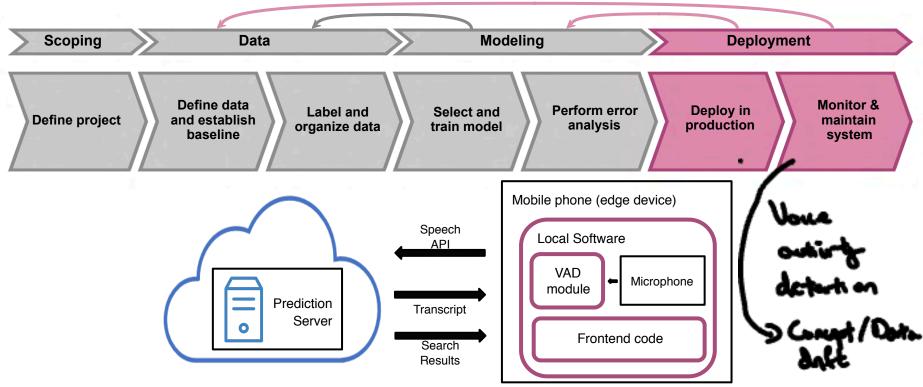


- Is the data labeled consistently?
- How much silence before/after each clip?
- How to perform volume normalization?

Speech recognition: Modeling stage



Speech recognition: Deployment stage

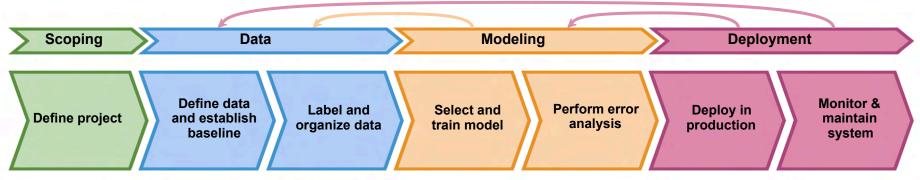


DeepLearning.Al

The Machine Learning Project Lifecycle

Course outline

Course outline



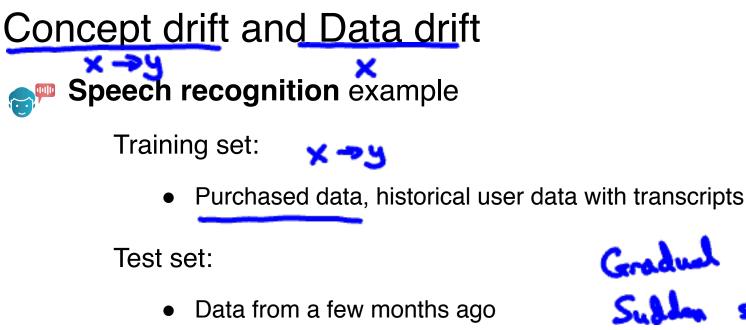
- 1. Deployment
- 2. Modeling
- 3. Data

Optional: Scoping

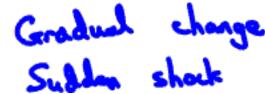
MLOps (Machine Learning Operations) is an emerging discipline, and comprises a set of tools and principles to support progress through the ML project lifecycle.

Deployment

Key challenges



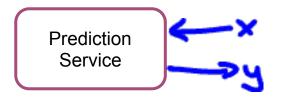
How has the data changed?



Software engineering issues

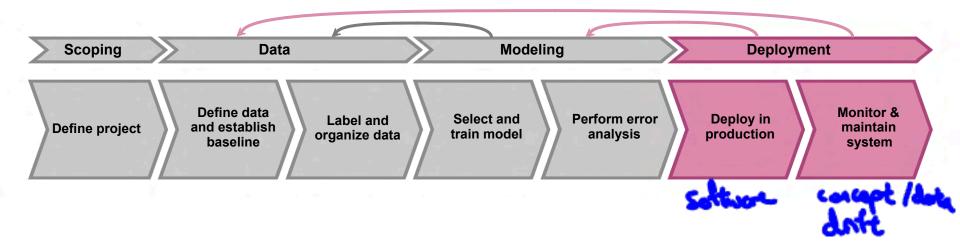
Checklist of questions

- Realtime or Batch
- Cloud vs. Edge/Browser
- Compute resources (CPU/GPU/memory)
- Latency, throughput (QPS)
- Logging
- Security and privacy



Soome, 1000 QPS

First deployment vs. maintenance



Deployment

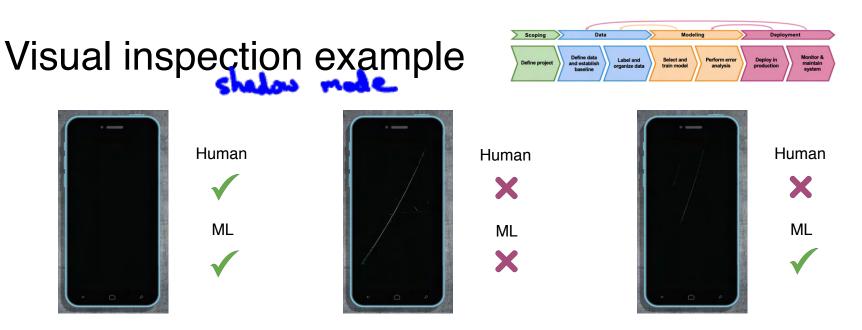
Deployment patterns

Common deployment cases

- 1. New product/capability
- 2. Automate/assist with manual task
- 3. Replace previous ML system

Key ideas:

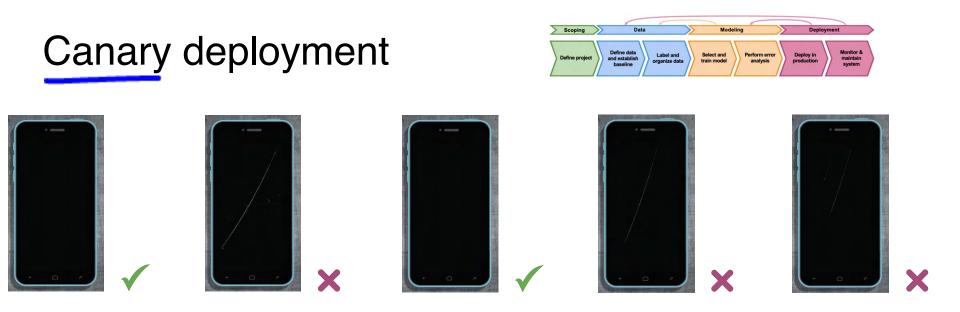
- Gradual ramp up with monitoring
- Rollback



ML system shadows the human and runs in parallel.

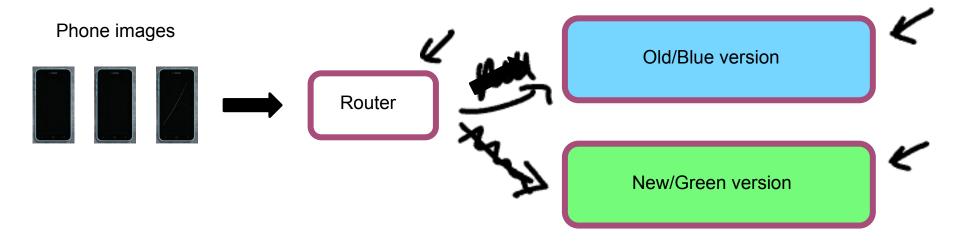
ML system's output not used for any decisions during this phase.

Sample outputs and verify predictions of ML system.

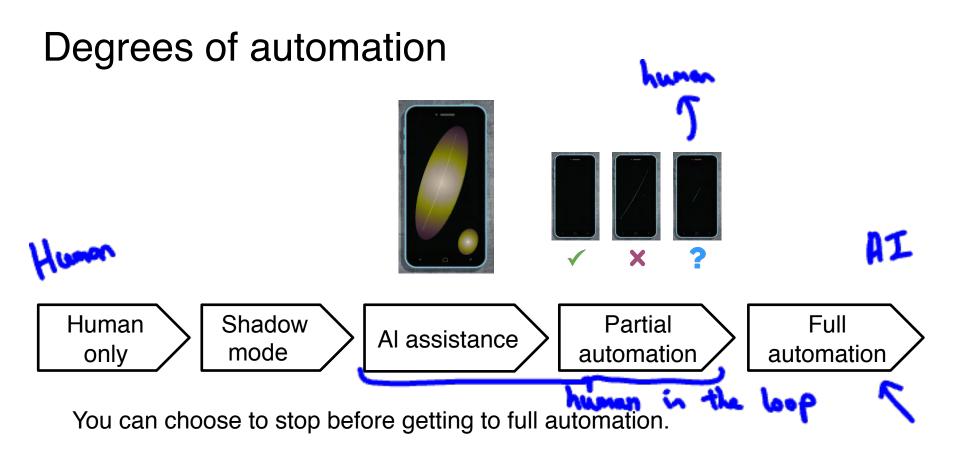


- Roll out to small fraction (say 5%) of traffic initially.
- Monitor system and ramp up traffic gradually.

Blue green deployment



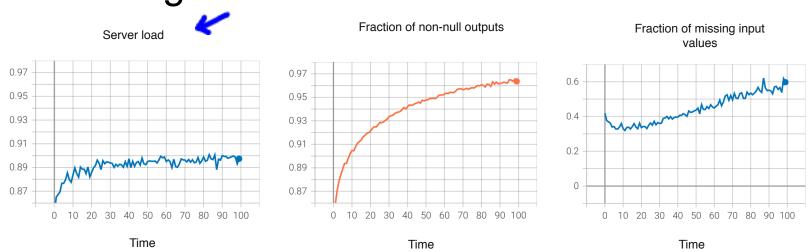
Easy way to enable rollback



Deployment

Monitoring

Monitoring dashboard



- Brainstorm the things that could go wrong.
- Brainstorm a few statistics/metrics that will detect the problem.
- It is ok to use many metrics initially and gradually remove the ones you find not useful.

Examples of metrics to track

Software metrics:

Input metrics:

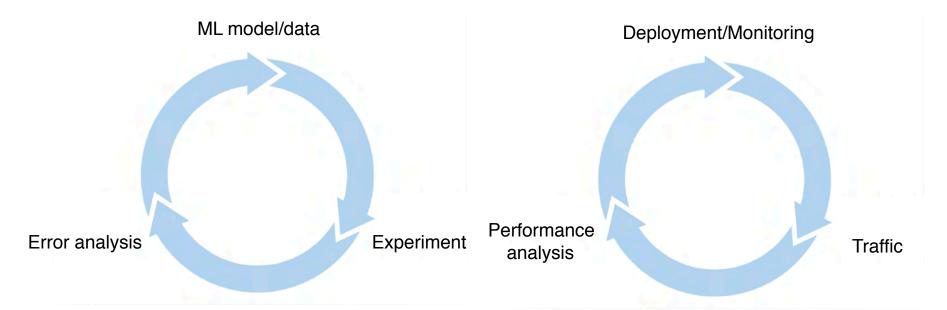
Output metrics:

Memory, compute, latency, throughput, server load

Avg input length Avg input volume Num missing values Avg image brightness

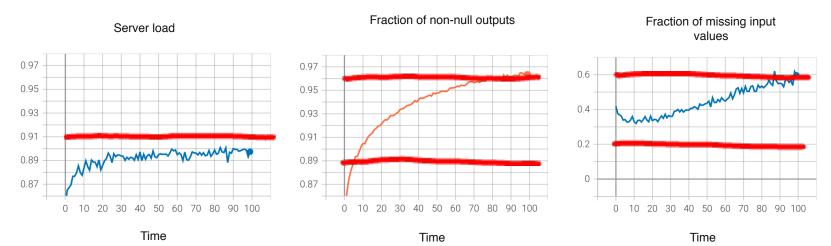
times return " " (null)
times user redoes search
times user switches to typing
CTR

Just as ML modeling is iterative, so is deployment



Iterative process to choose the right set of metrics to monitor.

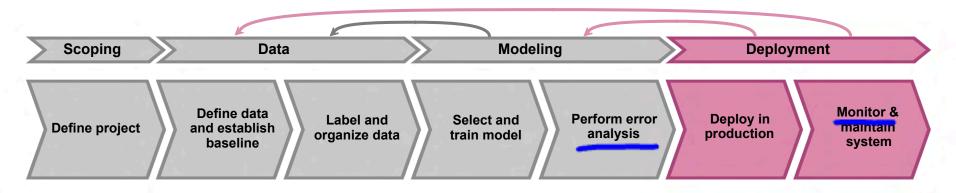
Monitoring dashboard



- Set thresholds for alarms
- Adapt metrics and thresholds over time



Model maintenance

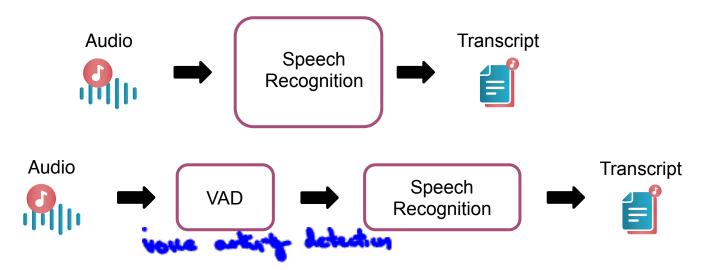


- Manual retraining
 Automatic retraining

Deployment

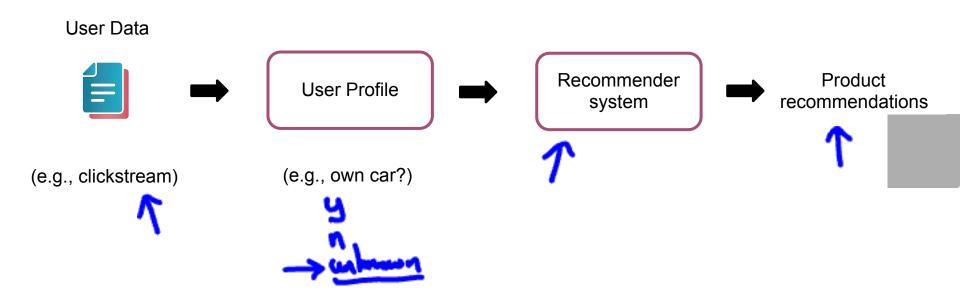
Pipeline monitoring

Speech recognition example



Some cellphones might have VAD clip audio differently, leading to degraded performance

User profile example



Metrics to monitor

Monitor

- Software metrics
- Input metrics
- Output metrics

How quickly do they change?

- User data generally has slower drift.
- Enterprise data (B2B applications) can shift fast.

