tf-idf
- Document Classification (01 Apr 2017)
An introduction to the Document Classification task, in this case in a multi-class and multi-label scenario, proposed solutions include TF-IDF weighted vectors, an average of word2vec words-embeddings and a single vector representation of the document using doc2vec. Includes code using Pipeline and GridSearchCV classes from scikit-learn. 
RAG 
  
  
  viterbi 
  
  
  sequence-prediction 
  
  
  retrieval-augmented-generation 
  
  
  Haystack 
  
  
  scikit-learn 
  
  
  pos-tags 
  
  
  evaluation_metrics 
  
  
  conditional-random-fields 
  
  
  classification 
  
  
  NER 
  
  
  word2vec 
  
  
  word-embeddings 
  
  
  triplet-loss 
  
  
  syntactic-dependencies 
  
  
  sentence-transformers 
  
  
  relationship-extraction 
  
  
  neural-networks 
  
  
  fine-tuning 
  
  
  embeddings 
  
  
  coursera 
  
  
  conference 
  
  
  SyntaxNet 
  
  
  NLTK 
  
  
  LSTM 
  
  
  CRF 
  
  
  wikidata 
  
  
  transformers 
  
  
  tokenization 
  
  
  tf-idf 
  
  
  text-summarisation 
  
  
  semantic-web 
  
  
  semantic-drift 
  
  
  retrieval 
  
  
  resources 
  
  
  reference-post 
  
  
  production 
  
  
  portuguese 
  
  
  political-science 
  
  
  named-entity-recognition 
  
  
  naive-bayes 
  
  
  multi-label-classification 
  
  
  monitoring 
  
  
  mlops 
  
  
  metrics 
  
  
  metadata-extraction 
  
  
  maximum-entropy-markov-models 
  
  
  logistic-regression 
  
  
  llms 
  
  
  language-models 
  
  
  information-retrieval 
  
  
  information-extraction 
  
  
  imbalanced_data 
  
  
  hyperparameter-optimization 
  
  
  hidden-markov-models 
  
  
  haystack 
  
  
  grid-search 
  
  
  gensim 
  
  
  generative-ai 
  
  
  fasttext 
  
  
  evaluation 
  
  
  document-classification 
  
  
  doc2vec 
  
  
  deployment 
  
  
  dependency-graph 
  
  
  dataset 
  
  
  data-challenge 
  
  
  convolutional-neural-networks 
  
  
  contrastive-learning 
  
  
  books 
  
  
  attention 
  
  
  SPARQL 
  
  
  RNN 
  
  
  PyData 
  
  
  KOVENS 
  
  
  GRU