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Natural Language Processing Tasks

Language Analysis

Tokenization: Segmenting text into words, subwords, or character
Lemmatization/Stemming: Reducing words to base/root forms
Part-of-speech (POS) tagging: Classifying words by grammatical categories
Syntactic parsing: Determining grammatical structure of sentences
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Natural Language Processing Tasks

"Noam Chomsky, a linguist at MIT, revolutionized cognitive science with his theory of universal grammar in the 1950s."

Named Entity Recognition (NER) Entity Linking
Entity Type Entity Knowledge Base Link (Example)
Noam Chomsky Person Noam Chomsky https://www.wikidata.org/wiki/Q9049
MIT Organization MIT https://www.wikidata.org/wiki/Q49108
theory of universal grammar | Work universal grammar https://www.wikidata.org/wiki/Q728252
1950s Date

Relationship Extraction

Entity 1 Relation Entity 2 Third edition
Noam Chomsky AFFILIATED_WITH | MIT
Noam Chomsky PROPOSED theory of universal grammar 7
theory of universal grammar | PUBLISHED_IN 1950 ChomSky -
univ .
- Universal

Grammar

AN INTRODUCTION

Coreference Resolution
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Natural Language Processing Tasks

Language Analysis

Tokenization: Segmenting text into words, subwords, or character
Lemmatization/Stemming: Reducing words to base/root forms
Part-of-speech (POS) tagging: Classifying words by grammatical categories
Syntactic parsing: Determining grammatical structure of sentences

Semantic Understanding

Named entity recognition (NER): Identifying and classifying named entities
Relation extraction: Identifying relationships between entities

Coreference resolution: Finding expressions referring to the same entity
Entity linking: Connecting named-entities to knowledge base entries



Natural Language Processing Tasks

Text Classification

Text classification: Categorizing texts by topic, genre, etc.

Sentiment analysis: Determining emotional tone or opinion

Hate speech/offensive language detection: Identifying problematic content
Fake news detection: Identifying misleading information

Document Processing

e Text summarization: Extractive summarization or Abstractive summarization
e Information retrieval: Finding relevant documents/information
e Document clustering: Grouping similar documents



Natural Language Processing - early days

1950s-1980s Rule-Based Approaches

e Relied on hand-crafted rules and pattern matching.
e Linguists would create explicit grammatical rules that computers could follow to parse language.

1980s-1990s: Statistical Methods

e Hidden Markov Models (HMMs) became popular for part-of-speech tagging and speech recognition
e  Statistical parsing used probabilistic context-free grammars
e N-gram language models predicted words based on preceding context

2000-2012: Machine Learning Approaches

Support Vector Machines (SVMs) became dominant for many classification tasks

Conditional Random Fields (CRFs) excelled at sequence labeling tasks like NER and POS tagging
Maximum Entropy Models (MaxEnt) were widely used for various classification problems

Topic modeling with Latent Dirichlet Allocation (LDA, introduced 2003)



2000 - 2012: Email SPAM classifier

Subject: WIN a FREE iPhone NOW!!!
Body: Congratulations! You have been selected to win a FREE iPhone. Click
here to claim your prize.
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2000 - 2012: Email SPAM classifier

Subject: WIN a FREE iPhone NOW!!!
Body: Congratulations! You have been selected to win a FREE iPhone. Click
here to claim your prize.

Feature Extraction: transform the text into input for a machine learning algorithm/classifier

Text-based features:

- word frequencies, TF-IDF, n-grams
Character-level features:

- exclamation marks, dollar signs, uppercase ratio
Metadata features:

- number of recipients, HTML content, attachments
Structural features

- email length, header format, URL count
Other features

- any of the outcomes of the linguistic analysis (before)



2000 - 2012: Email SPAM classifier

Subject: WIN a FREE iPhone NOW!!!
Body: Congratulations! You have been selected to win a FREE iPhone. Click
here to claim your prize.

Contains the word "free" 1
Contains the word "win" 1
Number of exclamation marks 3
Vector: [1, 1, 3, 3, 1, 15, 0]
All CAPS words count 3
Number of links 1
Email length (number of words) 15

Sender is in known contacts list 0



2000 - 2012: Email SPAM classifier

Subject: Meeting tomorrow
Body: Hey, can we reschedule the meeting for the next week? I can't make it
this week.

Contains the word "free" 0
Contains the word "win" 0
Number of exclamation marks 0
Vector: [0, O, O, 0, 0, 17, 0]
All CAPS words count 0
Number of links 0
Email length (number of words) 17

Sender is in known contacts list 1
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Support Vector Machines
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Decision Trees / Random Forest
Naive Bayes

Gradient Boosting
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2000 - 2012: Email SPAM classifier
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Text > Feature Extraction > Feature Vector > Learning Algorithm



2012 - 2014: From Feature Extraction to Embedding Vectors

e The distributional hypothesis by Harris (1954), states that each language can be described in
terms of a distributional structure, i.e., in terms of the occurrence of parts relative to other parts.

e Firth (1957) explored this idea, based on a word context, popularised by the famous quote you
“shall know a word by the company it keeps”

e Rubenstein and Goodenough (1965) have shown that a pair of words is highly synonymous if their
contexts show a relatively high amount of overlap.



2012 - 2014: From Feature Extraction to Embedding Vectors

e The distributional hypothesis by Harris (1954), states that each language can be described in
terms of a distributional structure, i.e., in terms of the occurrence of parts relative to other parts.

e Firth (1957) explored this idea, based on a word context, popularised by the famous quote you
“shall know a word by the company it keeps”

e Rubenstein and Goodenough (1965) have shown that a pair of words is highly synonymous if their
contexts show a relatively high amount of overlap.

Considering the words "doctor" and "physician"
e Looking at the contexts in which these words appear, there’s significant overlap
e Both frequently co-occur with terms like "patient," "hospital," "treatment," "diagnosis," etc

e This distributional similarity reflects their semantic similarity - they both refer to medical
professionals who treat patients



2012 - 2014: From Feature Extraction to Embedding Vectors

Example Sentence: The cat sat on the mat.

Continuous Bag-of-Words (CBOW) Skip-gram Model
G Glunt comdst vousdl, S T, CBOW: predicts a target word given its context words:
predict the target word. predict the surrounding context words.
1. Input: Context words represented as one-hot encoded
vectors.

2. Hidden layer: Learns word embeddings by averaging
the context word vectors.
3.  Output: Predicts the target word.
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2012 - 2014: From Feature Extraction to Embedding Vectors

Example Sentence: The cat sat on the mat.

Continuous Bag-of-Words (CBOW) Skip-gram Model
G Glunt comdst vousdl, S T, CBOW: predicts a target word given its context words:
predict the target word. predict the surrounding context words.
1. Input: Context words represented as one-hot encoded
vectors.

2. Hidden layer: Learns word embeddings by averaging
the context word vectors.
3.  Output: Predicts the target word.

Create word embeddings that capture semantic and syntactic relationships between words

The resulting embeddings allow for meaningful arithmetic operations on word vectors.
Analogy solving, e.g.: "king - man + woman = queen"



2012 - 2014: From Feature Extraction to Embedding Vectors
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2012 - 2014: From feature extraction to Embedding Vectors

Text > Feature Extraction > Feature Vector T > ML Learning Algorithm

Text —> Word Embeddings > ML Learning Algorithm

Text —> Word Embeddings —> Neural Networks

Word Embeddings revolutionised the way almost all NLP tasks can be solved.

Replacing the feature extraction/engineering with embeddings which could then be fed as
input to different neural network architectures



2014 - 2017: Embeddings and Neural Networks for NLP
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e Averaging: created a single vector representation for the entire document by summing up the embeddings of each word and
dividing by the number of words

e Pooling Operations: Instead of simple averaging, some approaches used other pooling operations like max-pooling or
min-pooling over the word embeddings in a document



2014 - 2017: Embeddings and Neural Networks for NLP

Word Embeddings Limitations

- ‘I deposited 100 EUR in the bank.” vs “She was enjoying the sunset on the left bank of the river.”
- bank has the same embedding vector
- Couldn't capture polysemy, no contextual understanding of words in sentences



2014 - 2017: Embeddings and Neural Networks for NLP

Word Embeddings Limitations

- ‘I deposited 100 EUR in the bank.” vs “She was enjoying the sunset on the left bank of the river.”
- bank has the same embedding vector
- Couldn't capture polysemy, no contextual understanding of words in sentences

RNN/LSTM Limitations (dominant models but faced several challenges)
Sequential Processing Bottleneck: Processing words one-by-one, making parallelization difficult

Long-range Dependency Problems: Difficulty capturing relationships between distant words



2017 - 2018: Transformer and BERT

2017 paper "Attention Is All You Need”

- Self-Attention Mechanism:

o Each word can "attend" to all other words, capturing long-range dependencies
- Parallelizable computation:

o no sequential processing
- Contextual Representations:

o same word gets different embeddings in different contexts

Transformer architecture consists of two main building blocks:

- an encoder
- a decoder
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2017 - 2018: Transformer and BERT

“BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding”

- Pre-Training
- Predicting words that have been randomly masked out of sentences
- Determining whether sentence B could follow after sentence A in a text passage
- Wikipedia (approximately 2.5 billion words)
- Google's BooksCorpus (approximately 800 million words)
- Resulted in good initial word representations embeddings

- Fine-Tuning
- Model is fine-tuned to learn a specific task initialised from the pre-trained model parameters
- BERT achieved good benchmarks results in several NLP tasks



Positional
Encoding

Output
Probabilities

Linear

(e
Add & Norm

Feed
Forward

Add & Norm

Multi-Head
Attention

———

D

Input
Embedding

Inputs

2017 - 2018: Transformer and BERT

“BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding”

- Pre-Training
- Predicting words that have been randomly masked out of sentences
- Determining whether sentence B could follow after sentence A in a text passage
- Wikipedia (approximately 2.5 billion words)
- Google's BooksCorpus (approximately 800 million words)
- Resulted in good initial word representations embeddings

- Fine-Tuning

- Model is fine-tuned to learn a specific task initialised from the pre-trained model parameters
- BERT achieved good benchmarks results in several NLP tasks

BERT become a powerful feature extractor!
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2017 - 2018: Transformer and BERT

“BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding”

- Pre-Training
- Predicting words that have been randomly masked out of sentences
- Determining whether sentence B could follow after sentence A in a text passage
- Wikipedia (approximately 2.5 billion words)
- Google's BooksCorpus (approximately 800 million words)
- Resulted in good initial word representations embeddings

- Fine-Tuning

- Model is fine-tuned to learn a specific task initialised from the pre-trained model parameters
- BERT achieved good benchmarks results in several NLP tasks

—> Word Embeddings — Neural Networks
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2017 - 2018: Transformer and BERT

“BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding”

- Pre-Training
- Predicting words that have been randomly masked out of sentences
- Determining whether sentence B could follow after sentence A in a text passage
- Wikipedia (approximately 2.5 billion words)
- Google's BooksCorpus (approximately 800 million words)
- Resulted in good initial word representations embeddings

- Fine-Tuning

- Model is fine-tuned to learn a specific task initialised from the pre-trained model parameters
- BERT achieved good benchmarks results in several NLP tasks

BERT Pre-Trained Encoder Transformer —> Linear Layer



2017 - 2018: Transformer and BERT
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2019 - 2022: Pre-Training and Scaling

The BERT-like models: (encoder)

° Bidirectional context
e  Task-specific fine-tuning
° Discriminative tasks

Generative models: (decoder)

e  Unidirectional (autoregressive) prediction
e  Scaling compute and parameters
e  Zero/few-shot capabilities through prompting to solve tasks



2019 - 2022: Pre-Training and Scaling

RoBERTa (Facebook): Robustly optimized BERT pre-training approach (encoder)

ALBERT (Google): A Lite BERT with parameter reduction techniques while maintaining performance (encoder)

DistilBERT (HuggingFace): Knowledge distillation for creating smaller, faster models (encoder)

T5 (Google): Text-to-Text Transfer Transformer unifying NLP tasks into a text-to-text format (seq2seq)

GPT-2 (OpenAl): 1.5B parameter model shows surprising zero-shot abilities; initially "too dangerous" for full release (decoder)

GPT-3 (OpenAl): a language model with 175 billion parameters, demonstrating remarkable abilities in text generation, coding,
and creative tasks (decoder)

CLIP (OpenAl): Contrastive Language-Image Pre-training bridging text and visual understanding (multimodal)
CodeX (OpenAl): Code generation model fine-tuned on GitHub repositories, precursor to GitHub Copilot (decoder)
FLAN (Google): Instruction-tuned model demonstrating improved few-shot learning capabilities across diverse tasks (decoder)



2022 Onwards: Decoder-Centric Generative Al

Large Language Models

ChatGPT (November 2022): OpenAl's conversational interface built on GPT-3.5 that mainstream audiences adopted rapidly
GPT-4 (March 2023): Multimodal capabilities with significantly improved reasoning

LLaMA (February 2023): Meta's open-source LLM series that catalyzed open-source development

Claude models (2023-2024): Anthropic's models focused on helpfulness and harmlessness



2022 Onwards: Decoder-Centric Generative Al

Large Language Models

ChatGPT (November 2022): OpenAl's conversational interface built on GPT-3.5 that mainstream audiences adopted rapidly
GPT-4 (March 2023): Multimodal capabilities with significantly improved reasoning

LLaMA (February 2023): Meta's open-source LLM series that catalyzed open-source development
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Multimodal Generative Models

e DALL-E 2 (April 2022) and DALL-E 3 (2023): Text-to-image generation with improved coherence
e  Stable Diffusion (August 2022): Open-source text-to-image model that revolutionized accessibility
e Midjourney (2022-2023): Text-to-image service with distinctive aesthetic quality



2022 Onwards: Decoder-Centric Generative Al

Large Language Models

ChatGPT (November 2022): OpenAl's conversational interface built on GPT-3.5 that mainstream audiences adopted rapidly
GPT-4 (March 2023): Multimodal capabilities with significantly improved reasoning

LLaMA (February 2023): Meta's open-source LLM series that catalyzed open-source development

Claude models (2023-2024): Anthropic's models focused on helpfulness and harmlessness

Multimodal Generative Models

e DALL-E 2 (April 2022) and DALL-E 3 (2023): Text-to-image generation with improved coherence
e  Stable Diffusion (August 2022): Open-source text-to-image model that revolutionized accessibility
e Midjourney (2022-2023): Text-to-image service with distinctive aesthetic quality

2023-2025: emerging trends - what's next?

e Tool Use: Models effectively leveraging external tools and APIs to extend capabilities
e Agentic Systems: LLMs orchestrating complex tasks with planning capabilities
e Local Deployment: Smaller, more efficient models running on personal devices



Haystack Introduction



Haystack

by deepset

e Open-source Al orchestration framework by deepset

o deepset Al Platform is built on Haystack

e Provides the tools that Python developers need to build real
world, agentic Al systems

» Building blocks: Components & Pipelines

Component

@

Pipeline



Haystack

by deepset

Pipelines - Assemble components into workflows
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https://haystack.deepset.ai/tutorials/27_first_rag_pipeline
https://haystack.deepset.ai/tutorials/27_first_rag_pipeline

Haystack Agents

Q Agent
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Haystack Use Cases

e RAG - Web RAG

e Converting, preprocessing, embedding, indexing

o Text-to-SQL Pipeline

o Advanced Retrieval (Hybrid, Sentence Window Retrieval, HyDE)
e Conversational & Chat Systems

o Agent (ReAct, Self Reflection, Multimodal, Multi-Agent)
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Build with Haystack

[ pip install haystack-ai ] [ haystack.deepset.ai ]

%’ Get Started
Documentation

% Haystack Integrations
e Haystack Cookbook
M Haystack Tutorials

% Haystack Demos

¥ datacawmp
Q Discord community B Building Al Agents with Haystack



https://haystack.deepset.ai/overview/quick-start?utm_campaign=developer-relations&utm_source=weaviate-hack-day&utm_medium=presentation
https://docs.haystack.deepset.ai/docs/intro?utm_campaign=developer-relations&utm_source=weaviate-hack-day&utm_medium=presentation
https://haystack.deepset.ai/integrations?utm_campaign=developer-relations&utm_source=weaviate-hack-day&utm_medium=presentation
https://github.com/deepset-ai/haystack-cookbook
https://haystack.deepset.ai/tutorials
https://github.com/deepset-ai/haystack-demos
https://discord.com/invite/VBpFzsgRVF
https://app.datacamp.com/learn/courses/building-ai-agents-with-haystack

Haystack Demos

e https://itinerary-agent.deepset.ai/

e https://hugqgingface.co/spaces/deepset/autoquizzer

e https://hugqgingface.co/spaces/bilgeyucel/captionate



https://itinerary-agent.deepset.ai/
https://huggingface.co/spaces/deepset/autoquizzer
https://huggingface.co/spaces/bilgeyucel/captionate
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Components

from haystack import component InpLSE INPEES
@component
class Component:

@component.output_types(output=str) i

def run(input_1: str, input_2: str): i

return {"output": ""} Output




Haystack: RAG and Agents framework
2021~2022 - Retrieval-Augmented Generation (RAG): Combining generation with external knowledge retrieval

Retrieval-Based Systems: fetch relevant documents from a DB based on a query.
LLMs: generate responses based on the input query using the language model.

Retrieval-Augmented Generation (RAG): RAG combines the strengths of both approaches. It first retrieves relevant
documents or passages based on the query and then uses these retrieved pieces of information to generate a more informed
and accurate response. This helps in grounding the generated responses in factual information, reducing hallucinations, and
improving overall accuracy.

Query Retriever

@ «

Your

Documents



From classic Information Systems to RAG
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From classic Information Systems to RAG 0
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e Return a list of documents or snippets, requiring users to read through multiple results
to find the information they need

e A complex or nuanced query requires a deeper understanding of the context and
relationships between different pieces of information

65



From classic Information Systems to RAG
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Documents relevant to
Document Collection
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e What if, instead the user sifting through the results, we build a prompt composed by
retrieved snippets together with the query and feed it to an LLM?
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From classic Information Systems to RAG
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2012 - 2014: From Feature Extraction to Embedding Vectors
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