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Natural Language Processing Tasks

Language Analysis

● Tokenization: Segmenting text into words, subwords, or character
● Lemmatization/Stemming: Reducing words to base/root forms
● Part-of-speech (POS) tagging: Classifying words by grammatical categories
● Syntactic parsing: Determining grammatical structure of sentences



Natural Language Processing Tasks

"Noam Chomsky, a linguist at MIT, revolutionized cognitive science with his theory of universal grammar in the 1950s."



Natural Language Processing Tasks

"Noam Chomsky, a linguist at MIT, revolutionized cognitive science with his theory of universal grammar in the 1950s."

Entity Type

Noam Chomsky Person

MIT Organization

theory of universal grammar Work

1950s Date

Named Entity Recognition (NER)



Natural Language Processing Tasks

"Noam Chomsky, a linguist at MIT, revolutionized cognitive science with his theory of universal grammar in the 1950s."

Entity Type

Noam Chomsky Person

MIT Organization

theory of universal grammar Work

1950s Date

Named Entity Recognition (NER)

Entity 1 Relation Entity 2

Noam Chomsky AFFILIATED_WITH MIT

Noam Chomsky PROPOSED theory of universal grammar

theory of universal grammar PUBLISHED_IN 1950

Relationship Extraction



Natural Language Processing Tasks

"Noam Chomsky, a linguist at MIT, revolutionized cognitive science with his theory of universal grammar in the 1950s."

Entity Type

Noam Chomsky Person

MIT Organization

theory of universal grammar Work

1950s Date

Named Entity Recognition (NER)

Entity 1 Relation Entity 2

Noam Chomsky AFFILIATED_WITH MIT

Noam Chomsky PROPOSED theory of universal grammar

theory of universal grammar PUBLISHED_IN 1950

his

Relationship Extraction

Coreference Resolution

Noam Chomsky



Natural Language Processing Tasks

"Noam Chomsky, a linguist at MIT, revolutionized cognitive science with his theory of universal grammar in the 1950s."

Entity Type

Noam Chomsky Person

MIT Organization

theory of universal grammar Work

1950s Date

Named Entity Recognition (NER)

Entity 1 Relation Entity 2

Noam Chomsky AFFILIATED_WITH MIT

Noam Chomsky PROPOSED theory of universal grammar

theory of universal grammar PUBLISHED_IN 1950

his

Entity Knowledge Base Link (Example)

Noam Chomsky https://www.wikidata.org/wiki/Q9049

MIT https://www.wikidata.org/wiki/Q49108

universal grammar https://www.wikidata.org/wiki/Q728252
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Natural Language Processing Tasks

Language Analysis

● Tokenization: Segmenting text into words, subwords, or character
● Lemmatization/Stemming: Reducing words to base/root forms
● Part-of-speech (POS) tagging: Classifying words by grammatical categories
● Syntactic parsing: Determining grammatical structure of sentences

Semantic Understanding

● Named entity recognition (NER): Identifying and classifying named entities
● Relation extraction: Identifying relationships between entities
● Coreference resolution: Finding expressions referring to the same entity
● Entity linking: Connecting named-entities to knowledge base entries



Natural Language Processing Tasks

Text Classification

● Text classification: Categorizing texts by topic, genre, etc.
● Sentiment analysis: Determining emotional tone or opinion
● Hate speech/offensive language detection: Identifying problematic content
● Fake news detection: Identifying misleading information

Document Processing

● Text summarization: Extractive summarization or Abstractive summarization
● Information retrieval: Finding relevant documents/information
● Document clustering: Grouping similar documents



Natural Language Processing - early days

1950s-1980s Rule-Based Approaches

● Relied on hand-crafted rules and pattern matching. 
● Linguists would create explicit grammatical rules that computers could follow to parse language. 

1980s-1990s: Statistical Methods

● Hidden Markov Models (HMMs) became popular for part-of-speech tagging and speech recognition
● Statistical parsing used probabilistic context-free grammars
● N-gram language models predicted words based on preceding context

2000-2012: Machine Learning Approaches

● Support Vector Machines (SVMs) became dominant for many classification tasks
● Conditional Random Fields (CRFs) excelled at sequence labeling tasks like NER and POS tagging
● Maximum Entropy Models (MaxEnt) were widely used for various classification problems
● Topic modeling with Latent Dirichlet Allocation (LDA, introduced 2003)
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Subject: WIN a FREE iPhone NOW!!!
Body: Congratulations! You have been selected to win a FREE iPhone. Click 
here to claim your prize.

2000 - 2012: Email SPAM classifier

Text-based features: 
- word frequencies, TF-IDF, n-grams

Character-level features:
- exclamation marks, dollar signs, uppercase ratio

Metadata features: 
- number of recipients, HTML content, attachments

Structural features
- email length, header format, URL count

Other features
- any of the outcomes of the linguistic analysis (before)

Feature Extraction: transform the text into input for a machine learning algorithm/classifier



Subject: WIN a FREE iPhone NOW!!!
Body: Congratulations! You have been selected to win a FREE iPhone. Click 
here to claim your prize.

 Contains the word "free" 1

 Contains the word "win" 1

 Number of exclamation marks 3

 All CAPS words count 3

 Number of links 1

 Email length (number of words) 15

 Sender is in known contacts list 0

Vector: [1, 1, 3, 3, 1, 15, 0]

2000 - 2012: Email SPAM classifier



Subject: Meeting tomorrow
Body: Hey, can we reschedule the meeting for the next week? I can't make it 
this week.

 Contains the word "free" 0

 Contains the word "win" 0

 Number of exclamation marks 0

 All CAPS words count 0

 Number of links 0

 Email length (number of words) 17

 Sender is in known contacts list 1

Vector: [0, 0, 0, 0, 0, 17, 0]

2000 - 2012: Email SPAM classifier



Train a classifier based on labeled data

[1, 0, 2, 1, 0, 25, 1] - NOT SPAM

[0, 1, 1, 2, 1, 10, 0] - SPAM

[0, 0, 3, 0, 2, 30, 1] - SPAM

[1, 1, 0, 1, 0, 40, 0] - NOT SPAM

[0, 0, 1, 3, 1, 15, 1] - NOT SPAM

[1, 0, 0, 0, 2, 20, 0] - SPAM

[0, 1, 2, 1, 1, 35, 1] - NOT SPAM

[1, 1, 1, 2, 0, 22, 0] - SPAM

2000 - 2012: Email SPAM classifier
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- Logistic Regression
- Support Vector Machines
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- Gradient Boosting
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Text Feature Extraction Feature Vector Learning Algorithm
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● The distributional hypothesis by Harris (1954), states that each language can be described in 
terms of a distributional structure, i.e., in terms of the occurrence of parts relative to other parts. 

● Firth (1957) explored this idea, based on a word context, popularised by the famous quote you 
“shall know a word by the company it keeps”
 

● Rubenstein and Goodenough (1965) have shown that a pair of words is highly synonymous if their 
contexts show a relatively high amount of overlap.

2012 - 2014: From Feature Extraction to Embedding Vectors
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Considering the words "doctor" and "physician"

● Looking at the contexts in which these words appear, there’s significant overlap

● Both frequently co-occur with terms like "patient," "hospital," "treatment," "diagnosis," etc

● This distributional similarity reflects their semantic similarity - they both refer to medical 
professionals who treat patients



2012 - 2014: From Feature Extraction to Embedding Vectors

CBOW: predicts a target word given its context words:

1. Input: Context words represented as one-hot encoded 
vectors.

2. Hidden layer: Learns word embeddings by averaging 
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3. Output: Predicts the target word.
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2012 - 2014: From Feature Extraction to Embedding Vectors

Create word embeddings that capture semantic and syntactic relationships between words

CBOW: predicts a target word given its context words:

1. Input: Context words represented as one-hot encoded 
vectors.

2. Hidden layer: Learns word embeddings by averaging 
the context word vectors.

3. Output: Predicts the target word.

The resulting embeddings allow for meaningful arithmetic operations on word vectors.
Analogy solving, e.g.: "king - man + woman ≈ queen"
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2012 - 2014: From feature extraction to Embedding Vectors

Text Feature Extraction Feature Vector

Text Word Embeddings

Text Word Embeddings Neural Networks

Word Embeddings revolutionised the way almost all NLP tasks can be solved. 

Replacing the feature extraction/engineering with embeddings which could then be fed as 
input to different neural network architectures

ML Learning Algorithm

ML Learning Algorithm



2014 - 2017: Embeddings and Neural Networks for NLP

● Averaging: created a single vector representation for the entire document by summing up the embeddings of each word and 
dividing by the number of words

● Pooling Operations: Instead of simple averaging, some approaches used other pooling operations like max-pooling or 
min-pooling over the word embeddings in a document
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- “I deposited 100 EUR in the bank.” vs “She was enjoying the sunset on the left bank of the river.”
- bank has the same embedding vector
- Couldn't capture polysemy, no contextual understanding of words in sentences



2014 - 2017: Embeddings and Neural Networks for NLP

Word Embeddings Limitations

- “I deposited 100 EUR in the bank.” vs “She was enjoying the sunset on the left bank of the river.”
- bank has the same embedding vector
- Couldn't capture polysemy, no contextual understanding of words in sentences

RNN/LSTM Limitations (dominant models but faced several challenges)

Sequential Processing Bottleneck: Processing words one-by-one, making parallelization difficult

Long-range Dependency Problems: Difficulty capturing relationships between distant words



2017 - 2018: Transformer and BERT

2017 paper "Attention Is All You Need”

- Self-Attention Mechanism: 
○ Each word can "attend" to all other words, capturing long-range dependencies

- Parallelizable computation:
○ no sequential processing

- Contextual Representations: 
○ same word gets different embeddings in different contexts

Transformer architecture consists of two main building blocks:
- an encoder 
- a decoder



2017 - 2018: Transformer and BERT

“BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding”

- Pre-Training
- Predicting words that have been randomly masked out of sentences 
- Determining whether sentence B could follow after sentence A in a text passage
- Wikipedia (approximately 2.5 billion words)
- Google's BooksCorpus (approximately 800 million words)
- Resulted in good initial word representations embeddings

-  Fine-Tuning
- Model is fine-tuned to learn a specific task initialised from the pre-trained model parameters
- BERT achieved good benchmarks results in several NLP tasks
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2017 - 2018: Transformer and BERT

“BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding”

- Pre-Training
- Predicting words that have been randomly masked out of sentences 
- Determining whether sentence B could follow after sentence A in a text passage
- Wikipedia (approximately 2.5 billion words)
- Google's BooksCorpus (approximately 800 million words)
- Resulted in good initial word representations embeddings

-  Fine-Tuning
- Model is fine-tuned to learn a specific task initialised from the pre-trained model parameters
- BERT achieved good benchmarks results in several NLP tasks

Text BERT Pre-Trained Encoder Transformer Linear Layer
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2019 - 2022: Pre-Training and Scaling

The BERT-like models: (encoder)

● Bidirectional context
● Task-specific fine-tuning
● Discriminative tasks

Generative models: (decoder)

● Unidirectional (autoregressive) prediction
● Scaling compute and parameters
● Zero/few-shot capabilities through prompting to solve tasks



2019 - 2022: Pre-Training and Scaling

2019:
- RoBERTa (Facebook): Robustly optimized BERT pre-training approach (encoder)
- ALBERT (Google): A Lite BERT with parameter reduction techniques while maintaining performance (encoder)
- DistilBERT (HuggingFace): Knowledge distillation for creating smaller, faster models (encoder)
- T5 (Google): Text-to-Text Transfer Transformer unifying NLP tasks into a text-to-text format (seq2seq)
- GPT-2 (OpenAI): 1.5B parameter model shows surprising zero-shot abilities; initially "too dangerous" for full release (decoder)

2020:
- GPT-3 (OpenAI): a language model with 175 billion parameters, demonstrating remarkable abilities in text generation, coding, 

and creative tasks (decoder)

2021:
- CLIP (OpenAI): Contrastive Language-Image Pre-training bridging text and visual understanding (multimodal)
- CodeX (OpenAI): Code generation model fine-tuned on GitHub repositories, precursor to GitHub Copilot (decoder)
- FLAN (Google): Instruction-tuned model demonstrating improved few-shot learning capabilities across diverse tasks (decoder)



2022 Onwards: Decoder-Centric Generative AI
Large Language Models

● ChatGPT (November 2022): OpenAI's conversational interface built on GPT-3.5 that mainstream audiences adopted rapidly
● GPT-4 (March 2023): Multimodal capabilities with significantly improved reasoning
● LLaMA (February 2023): Meta's open-source LLM series that catalyzed open-source development
● Claude models (2023-2024): Anthropic's models focused on helpfulness and harmlessness
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2022 Onwards: Decoder-Centric Generative AI
Large Language Models

● ChatGPT (November 2022): OpenAI's conversational interface built on GPT-3.5 that mainstream audiences adopted rapidly
● GPT-4 (March 2023): Multimodal capabilities with significantly improved reasoning
● LLaMA (February 2023): Meta's open-source LLM series that catalyzed open-source development
● Claude models (2023-2024): Anthropic's models focused on helpfulness and harmlessness

Multimodal Generative Models

● DALL-E 2 (April 2022) and DALL-E 3 (2023): Text-to-image generation with improved coherence
● Stable Diffusion (August 2022): Open-source text-to-image model that revolutionized accessibility
● Midjourney (2022-2023): Text-to-image service with distinctive aesthetic quality

2023-2025: emerging trends - what's next?

● Tool Use: Models effectively leveraging external tools and APIs to extend capabilities
● Agentic Systems: LLMs orchestrating complex tasks with planning capabilities
● Local Deployment: Smaller, more efficient models running on personal devices



Haystack Introduction



• Open-source AI orchestration framework by deepset
• deepset AI Platform is built on Haystack
• Provides the tools that Python developers need to build real 

world, agentic AI systems
• Building blocks: Components & Pipelines



Pipelines → Assemble components into workflows



Retrieval Augmented Generation

Tutorial: Creating Your First QA Pipeline with 
Retrieval-Augmentation

https://haystack.deepset.ai/tutorials/27_first_rag_pipeline
https://haystack.deepset.ai/tutorials/27_first_rag_pipeline


Haystack Agents 

User Request

Agent

LM (e.g. OpenAI, 
Anthropic, Google, 

Open Models)

System Prompt

Python 
Functions External APIs Haystack 

Components MCP Servers

Generated 
Answer



Haystack Use Cases
• RAG  Web RAG
• Converting, preprocessing, embedding, indexing
• Text-to-SQL Pipeline
• Advanced Retrieval Hybrid, Sentence Window Retrieval, HyDE
• Conversational & Chat Systems
• Agent ReAct, Self Reflection, Multimodal, Multi-Agent)



Build with Haystack

🚀 Get Started 
📘 Documentation
🧩 Haystack Integrations  
󰳏 Haystack Cookbook
🎮 Haystack Tutorials
👾 Haystack Demos

Discord community

pip install haystack-ai haystack.deepset.ai

󰟴 Building AI Agents with Haystack

https://haystack.deepset.ai/overview/quick-start?utm_campaign=developer-relations&utm_source=weaviate-hack-day&utm_medium=presentation
https://docs.haystack.deepset.ai/docs/intro?utm_campaign=developer-relations&utm_source=weaviate-hack-day&utm_medium=presentation
https://haystack.deepset.ai/integrations?utm_campaign=developer-relations&utm_source=weaviate-hack-day&utm_medium=presentation
https://github.com/deepset-ai/haystack-cookbook
https://haystack.deepset.ai/tutorials
https://github.com/deepset-ai/haystack-demos
https://discord.com/invite/VBpFzsgRVF
https://app.datacamp.com/learn/courses/building-ai-agents-with-haystack


Haystack Demos

• https://itinerary-agent.deepset.ai/

• https://huggingface.co/spaces/deepset/autoquizzer

• https://huggingface.co/spaces/bilgeyucel/captionate

https://itinerary-agent.deepset.ai/
https://huggingface.co/spaces/deepset/autoquizzer
https://huggingface.co/spaces/bilgeyucel/captionate






Extra



Components



Haystack: RAG and Agents framework

2021~2022 - Retrieval-Augmented Generation (RAG): Combining generation with external knowledge retrieval

1. Retrieval-Based Systems: fetch relevant documents from a DB based on a query.

2. LLMs: generate responses based on the input query using the language model.

3. Retrieval-Augmented Generation (RAG): RAG combines the strengths of both approaches. It first retrieves relevant 
documents or passages based on the query and then uses these retrieved pieces of information to generate a more informed 
and accurate response. This helps in grounding the generated responses in factual information, reducing hallucinations, and 
improving overall accuracy.
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From classic Information Systems to RAG

Document Collection

Returns

Documents relevant to 
the query

Query Reads



65

From classic Information Systems to RAG

● Return a list of documents or snippets, requiring users to read through multiple results 
to find the information they need

● A complex or nuanced query requires a deeper understanding of the context and 
relationships between different pieces of information

Document Collection

Returns

Documents relevant to 
the query

Query Reads



66

From classic Information Systems to RAG

Document Collection

Returns

Documents relevant to 
the query

Query Reads

● What if, instead the user sifting through the results, we build a prompt composed by 
retrieved snippets together with the query and feed it to an LLM?
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From classic Information Systems to RAG

Documents relevant 
to the query

Query

Document
s

Answer



2012 - 2014: From Feature Extraction to Embedding Vectors


