A Journey through
Natural Language Process

About me

Lisbon, Portugal

About me

Lisbon, Portugal Berlin, Germany

Natural Language Processing Tasks

Natural Language Processing Tasks

"Noam Chomsky, a linguist at MIT, revolutionized cognitive science with his theory of universal grammar in the 1950s."

Natural Language Processing Tasks

"Noam Chomsky, a linguist at MIT, revolutionized cognitive science with his theory of universal grammar in the 1950s."

Tokenization

["Noam "’ "Chomsky"’ II, ", "a ", "linguist"’ "at"’ "MIT"’ ", ",
n"on "on

"revolutionized", "cognitive", "science”, "with", "his", "theory",
"of", "universal”, "grammar”, "in", "the", "1950s", "."]

Natural Language Processing Tasks

"Noam Chomsky, a linguist at MIT, revolutionized cognitive science with his theory of universal grammar in the 1950s."

Tokenization

["Noam"’ "Chomsky" nn "a", "linguist"’ "at"’ "MIT"’ ", ",

LA

revolutionized", "cognitive”, "science”, "with", "his", "theory",

H

of", "universal”, "grammar”, "in", "the", "1950s", "."]

H

Lemmatization/Stemming

Word Lemma Stem

revolutionized | revolutionize | revolutioniz

cognitive cognitive cognitiv

Natural Language Processing Tasks

"Noam Chomsky, a linguist at MIT, revolutionized cognitive science with his theory of universal grammar in the 1950s."

Tokenization Lemmatization/Stemming
["Noam"’ "Chomsky"’ II, ", "a", "linguistﬂ’ Hatll’ "MIT"’ II, ", Word

n"on

"revolutionized", "cognitive", "science”, "with", "his", "theory",
"of", "universal”, "grammar”, "in", "the", "1950s", "."]

Lemma Stem

revolutionized | revolutionize | revolutioniz

cognitive cognitive cognitiv
Part-of-speech (POS) tagging

Word POS Tag

Word POS Tag
Noam Proper Noun

with Preposition
Chomsky Proper Noun

his Pronoun
, Punctuation

theory Noun
a Determiner

of Preposition
linguist Noun

universal Adjective
at Preposition

grammar Noun
MIT Proper Noun

in Preposition
y Punctuation

the Determiner
revolutionized Verb

1950s Numeral
cognitive Adjective

Punctuation

science Noun

Natural Language Processing Tasks

"Noam Chomsky, a linguist at MIT, revolutionized cognitive science with his theory of universal grammar in the 1950s."

Tokenization Lemmatization/Stemming
["Noam"’ "Chomsky"’ ", ", "a", "linguist"’ "at"’ "MIT"’ ", ", Word Lemma stem
” H H " on i " on H "on 1 " on P [[n
"re){o’{utlgn/zed”, "cogn/t/ve", ".SC'{e’I"ICG " "Wlth ¢ "h I;S", theory ’ revolutionized | revolutionize | revolutioniz Syntaetlc parsing
of", "universal”, "grammar”, "in", "the", "1950s", "."]
cognitive cognitive cognitiv

revolutionized (ROOT)

Part-of-speech (POS) tagging nsubj: Chomsky

I: compound: Noam

Word POS Tag appos: linguist

Word POS Tag det: a
Noam Proper Noun | 5

with Preposition prep: at
Chomsky Proper Noun l :

his Pronoun . . pObJ 2 MIT
, Punctuation dobj: science

theory Noun | = sy
a Determiner amoq. cognitive

of Preposition prep: with
linguist Noun | O

universal Adjective pobj: theo ry_
at Preposition poss: his

grammar Noun 5
MIT Proper Noun prep: 01_:

in Preposition L— pobj: grammar
y Punctuation o :

= Determiner amc_;d : universal
revolutionized Verb = prep: 1n

1950s Numeral | pobj : 1950s
cognitive Adjective -

Punctuation L— det: the

science Noun punct .

Natural Language Processing Tasks

Language Analysis

Tokenization: Segmenting text into words, subwords, or character
Lemmatization/Stemming: Reducing words to base/root forms
Part-of-speech (POS) tagging: Classifying words by grammatical categories
Syntactic parsing: Determining grammatical structure of sentences

Natural Language Processing Tasks

"Noam Chomsky, a linguist at MIT, revolutionized cognitive science with his theory of universal grammar in the 1950s."

Natural Language Processing Tasks

"Noam Chomsky, a linguist at MIT, revolutionized cognitive science with his theory of universal grammar in the 1950s."

Named Entity Recognition (NER)

Entity Type
Noam Chomsky Person
MIT Organization

theory of universal grammar | Work

1950s Date

Natural Language Processing Tasks

"Noam Chomsky, a linguist at MIT, revolutionized cognitive science with his theory of universal grammar in the 1950s."

Named Entity Recognition (NER)

Entity Type
Noam Chomsky Person
MIT Organization

theory of universal grammar | Work

1950s Date

Relationship Extraction

Entity 1 Relation Entity 2

Noam Chomsky AFFILIATED_WITH | MIT

Noam Chomsky PROPOSED theory of universal grammar
theory of universal grammar | PUBLISHED_IN 1950

Natural Language Processing Tasks

"Noam Chomsky, a linguist at MIT, revolutionized cognitive science with his theory of universal grammar in the 1950s."

Named Entity Recognition (NER)

Entity Type
Noam Chomsky Person
MIT Organization

theory of universal grammar | Work

1950s Date

Relationship Extraction

Entity 1 Relation Entity 2

Noam Chomsky AFFILIATED_WITH | MIT

Noam Chomsky PROPOSED theory of universal grammar
theory of universal grammar | PUBLISHED_IN 1950

Coreference Resolution

his =—» Noam Chomsky

Natural Language Processing Tasks

"Noam Chomsky, a linguist at MIT, revolutionized cognitive science with his theory of universal grammar in the 1950s."

Named Entity Recognition (NER) Entity Linking
Entity Type Entity Knowledge Base Link (Example)
Noam Chomsky Person Noam Chomsky https://www.wikidata.org/wiki/Q9049
MIT Organization MIT https://www.wikidata.org/wiki/Q49108
theory of universal grammar | Work universal grammar https://www.wikidata.org/wiki/Q728252
1950s Date

Relationship Extraction

Entity 1 Relation Entity 2 Third edition
Noam Chomsky AFFILIATED_WITH | MIT
Noam Chomsky PROPOSED theory of universal grammar 7
theory of universal grammar | PUBLISHED_IN 1950 ChomSky -
univ .
- Universal

Grammar

AN INTRODUCTION

Coreference Resolution

his ::> Noam Chomsky . Cook and"Mark Newa

https://www.wikidata.org/wiki/Q9049
https://www.wikidata.org/wiki/Q49108
https://www.wikidata.org/wiki/Q728252

Natural Language Processing Tasks

Language Analysis

Tokenization: Segmenting text into words, subwords, or character
Lemmatization/Stemming: Reducing words to base/root forms
Part-of-speech (POS) tagging: Classifying words by grammatical categories
Syntactic parsing: Determining grammatical structure of sentences

Semantic Understanding

Named entity recognition (NER): Identifying and classifying named entities
Relation extraction: Identifying relationships between entities

Coreference resolution: Finding expressions referring to the same entity
Entity linking: Connecting named-entities to knowledge base entries

Natural Language Processing Tasks

Text Classification

Text classification: Categorizing texts by topic, genre, etc.

Sentiment analysis: Determining emotional tone or opinion

Hate speech/offensive language detection: Identifying problematic content
Fake news detection: Identifying misleading information

Document Processing

e Text summarization: Extractive summarization or Abstractive summarization
e Information retrieval: Finding relevant documents/information
e Document clustering: Grouping similar documents

Natural Language Processing - early days

1950s-1980s Rule-Based Approaches

e Relied on hand-crafted rules and pattern matching.
e Linguists would create explicit grammatical rules that computers could follow to parse language.

1980s-1990s: Statistical Methods

e Hidden Markov Models (HMMs) became popular for part-of-speech tagging and speech recognition
e Statistical parsing used probabilistic context-free grammars
e N-gram language models predicted words based on preceding context

2000-2012: Machine Learning Approaches

Support Vector Machines (SVMs) became dominant for many classification tasks

Conditional Random Fields (CRFs) excelled at sequence labeling tasks like NER and POS tagging
Maximum Entropy Models (MaxEnt) were widely used for various classification problems

Topic modeling with Latent Dirichlet Allocation (LDA, introduced 2003)

2000 - 2012: Email SPAM classifier

Subject: WIN a FREE iPhone NOW!!!
Body: Congratulations! You have been selected to win a FREE iPhone. Click
here to claim your prize.

2000 - 2012: Email SPAM classifier

Subject: WIN a FREE iPhone NOW!!!

Body: Congratulations! You have been selected to win a FREE iPhone. Click
here to claim your prize.

Feature Extraction: transform the text into input for a machine learning algorithm/classifier

2000 - 2012: Email SPAM classifier

Subject: WIN a FREE iPhone NOW!!!
Body: Congratulations! You have been selected to win a FREE iPhone. Click
here to claim your prize.

Feature Extraction: transform the text into input for a machine learning algorithm/classifier

Text-based features:

- word frequencies, TF-IDF, n-grams
Character-level features:

- exclamation marks, dollar signs, uppercase ratio
Metadata features:

- number of recipients, HTML content, attachments
Structural features

- email length, header format, URL count
Other features

- any of the outcomes of the linguistic analysis (before)

2000 - 2012: Email SPAM classifier

Subject: WIN a FREE iPhone NOW!!!
Body: Congratulations! You have been selected to win a FREE iPhone. Click
here to claim your prize.

Contains the word "free" 1
Contains the word "win" 1
Number of exclamation marks 3
Vector: [1, 1, 3, 3, 1, 15, 0]
All CAPS words count 3
Number of links 1
Email length (number of words) 15

Sender is in known contacts list 0

2000 - 2012: Email SPAM classifier

Subject: Meeting tomorrow
Body: Hey, can we reschedule the meeting for the next week? I can't make it
this week.

Contains the word "free" 0
Contains the word "win" 0
Number of exclamation marks 0
Vector: [0, O, O, 0, 0, 17, 0]
All CAPS words count 0
Number of links 0
Email length (number of words) 17

Sender is in known contacts list 1

[1,
(e,
(e,
[1,
[e,
[1,
(e,

[1,

2000 - 2012: Email SPAM classifier

25,
10,
30,
40,
15,
20,
35,

22,

Train a classifier based on labeled data

1] - NOT SPAM
0] - SPAM
1] - SPAM
0] - NOT SPAM
1] -NOT SPAM
0] - SPAM
1] - NOT SPAM

0] - SPAM

[1,
(e,
(e,
[1,
[e,
[1,
(e,

[1,

2000 - 2012: Email SPAM classifier

A
, 10,
, 30,
, 40,
195,
, 20,
, 395,

, 22,

Train a classifier based on labeled data

1] -

0]
1]
0]
1]
0]
1]

0]

NOT SPAM

- SPAM

- SPAM

- NOT SPAM

- NOT SPAM

- SPAM

- NOT SPAM

- SPAM

Logistic Regression

Support Vector Machines
k-Nearest Neighbors (k-NN)
Decision Trees / Random Forest
Naive Bayes

Gradient Boosting

XGBoost

[1,
(e,
(e,
[1,
[e,
[1,
(e,

[1,

2000 - 2012: Email SPAM classifier

9, 2, 1, 0, 25,
1, 1, 2, 1, 160,
0, 3, 9, 2, 30,
1, 6, 1, 0, 40,
9, 1, 3, 1, 15,
0, 0, 9, 2, 20,
1, 2, 1, 1, 35,

1, 1, 2, 0, 22,

Train a classifier based on labeled data

1] - NOT SPAM
0] - SPAM
1] - SPAM
0] - NOT SPAM
1] -NOT SPAM
0] - SPAM
1] - NOT SPAM
0] - SPAM

Logistic Regression

Support Vector Machines
k-Nearest Neighbors (k-NN)
Decision Trees / Random Forest
Naive Bayes

Gradient Boosting

XGBoost

Text > Feature Extraction > Feature Vector > Learning Algorithm

2012 - 2014: From Feature Extraction to Embedding Vectors

e The distributional hypothesis by Harris (1954), states that each language can be described in
terms of a distributional structure, i.e., in terms of the occurrence of parts relative to other parts.

e Firth (1957) explored this idea, based on a word context, popularised by the famous quote you
“shall know a word by the company it keeps”

e Rubenstein and Goodenough (1965) have shown that a pair of words is highly synonymous if their
contexts show a relatively high amount of overlap.

2012 - 2014: From Feature Extraction to Embedding Vectors

e The distributional hypothesis by Harris (1954), states that each language can be described in
terms of a distributional structure, i.e., in terms of the occurrence of parts relative to other parts.

e Firth (1957) explored this idea, based on a word context, popularised by the famous quote you
“shall know a word by the company it keeps”

e Rubenstein and Goodenough (1965) have shown that a pair of words is highly synonymous if their
contexts show a relatively high amount of overlap.

Considering the words "doctor" and "physician"
e Looking at the contexts in which these words appear, there’s significant overlap
e Both frequently co-occur with terms like "patient," "hospital," "treatment," "diagnosis," etc

e This distributional similarity reflects their semantic similarity - they both refer to medical
professionals who treat patients

2012 - 2014: From Feature Extraction to Embedding Vectors

Example Sentence: The cat sat on the mat.

Continuous Bag-of-Words (CBOW) Skip-gram Model
G Glunt comdst vousdl, S T, CBOW: predicts a target word given its context words:
predict the target word. predict the surrounding context words.
1. Input: Context words represented as one-hot encoded
vectors.

2. Hidden layer: Learns word embeddings by averaging
the context word vectors.
3. Output: Predicts the target word.

2012 - 2014: From Feature Extraction to Embedding Vectors

Example Sentence: The cat sat on the mat.

Continuous Bag-of-Words (CBOW) Skip-gram Model
G Glunt comdst vousdl, S T, CBOW: predicts a target word given its context words:
predict the target word. predict the surrounding context words.
1. Input: Context words represented as one-hot encoded
vectors.

2. Hidden layer: Learns word embeddings by averaging
the context word vectors.
3. Output: Predicts the target word.

Create word embeddings that capture semantic and syntactic relationships between words

2012 - 2014: From Feature Extraction to Embedding Vectors

Example Sentence: The cat sat on the mat.

Continuous Bag-of-Words (CBOW) Skip-gram Model
G Glunt comdst vousdl, S T, CBOW: predicts a target word given its context words:
predict the target word. predict the surrounding context words.
1. Input: Context words represented as one-hot encoded
vectors.

2. Hidden layer: Learns word embeddings by averaging
the context word vectors.
3. Output: Predicts the target word.

Create word embeddings that capture semantic and syntactic relationships between words

The resulting embeddings allow for meaningful arithmetic operations on word vectors.
Analogy solving, e.g.: "king - man + woman = queen"

2012 - 2014: From Feature Extraction to Embedding Vectors

3()(&’ < A
Y ,b(‘ b@ S A
¥ & &£ ¢ L &
& ST & & © N
S AN N\ K
= L5 °° al houses
cat - 0.6 [09 | 0.1 |04 [-0.7]|-0.3|-0.2| pimensionality ®
reduction of
word
kitten —»| 0.5 | 0.8 [-0.1| 0.2 |-0.6|-0.5(-0.1| embeddings
from7DtoZP
= 7 e S el ae - cat
dog —|0.7 [-0.1|04 | 0.3 |-0.4|-0.1(-03 ® Litten
@
houses —|-0.8|-0.4|-0.5] 0.1 [-09]03 [0.8 @
dog
woman
man —| 0.6 |-0.2/0.8 |09 [-0.1|-09(-0.7| _ e
Dimensionality e
reduction of /’
woman —| 0.7 |03 |09 |-0.7| 0.1 |-0.5|-0.4 word
embeddings o
from 70 to 20 man queen
, °
queen —| 08 |-0.1| 08 [-09(0.8 |-0.5]|-0.9 3
\ 7 S J \ 2\ J
Y Y . S
Word Word embedding Dimensionality Visualization of word

reduction embeddings in 2D

2012 - 2014: From feature extraction to Embedding Vectors

Text > Feature Extraction > Feature Vector T > ML Learning Algorithm

2012 - 2014: From feature extraction to Embedding Vectors

Text > Feature Extraction > Feature Vector T > ML Learning Algorithm

Text —> Word Embeddings > ML Learning Algorithm

2012 - 2014: From feature extraction to Embedding Vectors

Text > Feature Extraction > Feature Vector T > ML Learning Algorithm

Text —> Word Embeddings > ML Learning Algorithm

Text —> Word Embeddings —> Neural Networks

2012 - 2014: From feature extraction to Embedding Vectors

Text > Feature Extraction > Feature Vector T > ML Learning Algorithm

Text —> Word Embeddings > ML Learning Algorithm

Text —> Word Embeddings —> Neural Networks

Word Embeddings revolutionised the way almost all NLP tasks can be solved.

Replacing the feature extraction/engineering with embeddings which could then be fed as
input to different neural network architectures

2014 - 2017: Embeddings and Neural Networks for NLP

{ activation function

l We
=S 1-max softmax function
oolin regularization
s d in this layer

saw paintings of Picasso

ey

3 region sizes: (2,3,4) 2 feature Word
Sentence matrix 2 filters for each region maps for 6 univariate 2 classes "
size each vectors Embedding
totally 6 filters region size concatenated

together to form a Additional

single feature
vector
CRF Layer

‘Word Features

CNN-extracted
Char Features

:

~
|
§ Forward
like LSTM
this LSTM
movie
very BiLSTM
much \ encoder Backwaid
| —
= E I LST™M
L] L Output
\ Layers
M Word
— beddi
LI o ke Tag Scores
— Best Tag
T Sequence (0] (0] (0] (6] S-PER

e Averaging: created a single vector representation for the entire document by summing up the embeddings of each word and
dividing by the number of words

e Pooling Operations: Instead of simple averaging, some approaches used other pooling operations like max-pooling or
min-pooling over the word embeddings in a document

2014 - 2017: Embeddings and Neural Networks for NLP

Word Embeddings Limitations

- ‘I deposited 100 EUR in the bank.” vs “She was enjoying the sunset on the left bank of the river.”
- bank has the same embedding vector
- Couldn't capture polysemy, no contextual understanding of words in sentences

2014 - 2017: Embeddings and Neural Networks for NLP

Word Embeddings Limitations

- ‘I deposited 100 EUR in the bank.” vs “She was enjoying the sunset on the left bank of the river.”
- bank has the same embedding vector
- Couldn't capture polysemy, no contextual understanding of words in sentences

RNN/LSTM Limitations (dominant models but faced several challenges)
Sequential Processing Bottleneck: Processing words one-by-one, making parallelization difficult

Long-range Dependency Problems: Difficulty capturing relationships between distant words

2017 - 2018: Transformer and BERT

2017 paper "Attention Is All You Need”

- Self-Attention Mechanism:

o Each word can "attend" to all other words, capturing long-range dependencies
- Parallelizable computation:

o no sequential processing
- Contextual Representations:

o same word gets different embeddings in different contexts

Transformer architecture consists of two main building blocks:

- an encoder
- a decoder

Feed-Forward

Network
Norm
Nx |~ ==
"Layers" | ,*
'
i
'
' Multi-Headed
1 | Self-Attention
1\)
'
'
'
'
'
'
\
Positional
Encoding

Embeddings/
Projections

Source Sequence

Predictions

‘
.

| | Feed-Forward
' Network
'

'

'

'

'

Multi-Headed
Cross-Attention

B S S S
vV K Q

Masked
Multi-Headed
Self-Attention

Embeddings/
Projections

Shifted
Target Sequence

Nx
"Layers"

[l
'
'
'
'
'
'
'
'
'
'
'
'
'
1

Positional
Encoding

Positional
Encoding

Output
Probabilities

Linear

(e
Add & Norm

Feed
Forward

Add & Norm

Multi-Head
Attention

———

D

Input
Embedding

Inputs

2017 - 2018: Transformer and BERT

“BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding”

- Pre-Training
- Predicting words that have been randomly masked out of sentences
- Determining whether sentence B could follow after sentence A in a text passage
- Wikipedia (approximately 2.5 billion words)
- Google's BooksCorpus (approximately 800 million words)
- Resulted in good initial word representations embeddings

- Fine-Tuning
- Model is fine-tuned to learn a specific task initialised from the pre-trained model parameters
- BERT achieved good benchmarks results in several NLP tasks

Positional
Encoding

Output
Probabilities

Linear

(e
Add & Norm

Feed
Forward

Add & Norm

Multi-Head
Attention

———

D

Input
Embedding

Inputs

2017 - 2018: Transformer and BERT

“BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding”

- Pre-Training
- Predicting words that have been randomly masked out of sentences
- Determining whether sentence B could follow after sentence A in a text passage
- Wikipedia (approximately 2.5 billion words)
- Google's BooksCorpus (approximately 800 million words)
- Resulted in good initial word representations embeddings

- Fine-Tuning

- Model is fine-tuned to learn a specific task initialised from the pre-trained model parameters
- BERT achieved good benchmarks results in several NLP tasks

BERT become a powerful feature extractor!

Positional
Encoding

Output
Probabilities

Linear

(e
Add & Norm

Feed
Forward

Add & Norm

Multi-Head
Attention

———

D

Input
Embedding

Inputs

Text

2017 - 2018: Transformer and BERT

“BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding”

- Pre-Training
- Predicting words that have been randomly masked out of sentences
- Determining whether sentence B could follow after sentence A in a text passage
- Wikipedia (approximately 2.5 billion words)
- Google's BooksCorpus (approximately 800 million words)
- Resulted in good initial word representations embeddings

- Fine-Tuning

- Model is fine-tuned to learn a specific task initialised from the pre-trained model parameters
- BERT achieved good benchmarks results in several NLP tasks

—> Word Embeddings — Neural Networks

Positional
Encoding

Output
Probabilities

Linear

(e
Add & Norm

Feed
Forward

Add & Norm

Multi-Head
Attention

———

D

Input
Embedding

Inputs

Text

2017 - 2018: Transformer and BERT

“BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding”

- Pre-Training
- Predicting words that have been randomly masked out of sentences
- Determining whether sentence B could follow after sentence A in a text passage
- Wikipedia (approximately 2.5 billion words)
- Google's BooksCorpus (approximately 800 million words)
- Resulted in good initial word representations embeddings

- Fine-Tuning

- Model is fine-tuned to learn a specific task initialised from the pre-trained model parameters
- BERT achieved good benchmarks results in several NLP tasks

BERT Pre-Trained Encoder Transformer —> Linear Layer

2017 - 2018: Transformer and BERT

Transformer

Output
Probabilities

Add & Norm
Feed
Forward
7

((Add & Norm =~

Aad g Norm Multi-Head
Feed Attention
Forward Nx
N Add & Norm
Add & Norm R
Multi-Head Multi-Head
Attention Attention
A P Al 2
Q J —
Positional D Positional
Encodi X & i
ncoding Encoding
Input Output
Embedding Embedding
Inputs QOutputs
(shifted right)

Vo oy gmel®

Encoder Decoder

GPT*

Output
Probabilities

Add & Norm
Feed
Forward
Add & Norm

Multi-Head
Attention

Nx
Add & Norm
Masked
Multi-Head
Attention
t
—
A Positional
Encoding
Output
Embedding
Outputs
(shifted right)
Decoder-only

BERT*

Output
Probabilities

Add & Norm
Feed
Forward
Nx Add & Norm
Multi-Head
Attention
e
Positional
Encoding

Input

Embedding

Inputs

Ty gl

Encoder-only

2019 - 2022: Pre-Training and Scaling

The BERT-like models: (encoder)

° Bidirectional context
e Task-specific fine-tuning
° Discriminative tasks

Generative models: (decoder)

e Unidirectional (autoregressive) prediction
e Scaling compute and parameters
e Zero/few-shot capabilities through prompting to solve tasks

2019 - 2022: Pre-Training and Scaling

RoBERTa (Facebook): Robustly optimized BERT pre-training approach (encoder)

ALBERT (Google): A Lite BERT with parameter reduction techniques while maintaining performance (encoder)

DistilBERT (HuggingFace): Knowledge distillation for creating smaller, faster models (encoder)

T5 (Google): Text-to-Text Transfer Transformer unifying NLP tasks into a text-to-text format (seq2seq)

GPT-2 (OpenAl): 1.5B parameter model shows surprising zero-shot abilities; initially "too dangerous" for full release (decoder)

GPT-3 (OpenAl): a language model with 175 billion parameters, demonstrating remarkable abilities in text generation, coding,
and creative tasks (decoder)

CLIP (OpenAl): Contrastive Language-Image Pre-training bridging text and visual understanding (multimodal)
CodeX (OpenAl): Code generation model fine-tuned on GitHub repositories, precursor to GitHub Copilot (decoder)
FLAN (Google): Instruction-tuned model demonstrating improved few-shot learning capabilities across diverse tasks (decoder)

2022 Onwards: Decoder-Centric Generative Al

Large Language Models

ChatGPT (November 2022): OpenAl's conversational interface built on GPT-3.5 that mainstream audiences adopted rapidly
GPT-4 (March 2023): Multimodal capabilities with significantly improved reasoning

LLaMA (February 2023): Meta's open-source LLM series that catalyzed open-source development

Claude models (2023-2024): Anthropic's models focused on helpfulness and harmlessness

2022 Onwards: Decoder-Centric Generative Al

Large Language Models

ChatGPT (November 2022): OpenAl's conversational interface built on GPT-3.5 that mainstream audiences adopted rapidly
GPT-4 (March 2023): Multimodal capabilities with significantly improved reasoning

LLaMA (February 2023): Meta's open-source LLM series that catalyzed open-source development

Claude models (2023-2024): Anthropic's models focused on helpfulness and harmlessness

Multimodal Generative Models

e DALL-E 2 (April 2022) and DALL-E 3 (2023): Text-to-image generation with improved coherence
e Stable Diffusion (August 2022): Open-source text-to-image model that revolutionized accessibility
e Midjourney (2022-2023): Text-to-image service with distinctive aesthetic quality

2022 Onwards: Decoder-Centric Generative Al

Large Language Models

ChatGPT (November 2022): OpenAl's conversational interface built on GPT-3.5 that mainstream audiences adopted rapidly
GPT-4 (March 2023): Multimodal capabilities with significantly improved reasoning

LLaMA (February 2023): Meta's open-source LLM series that catalyzed open-source development

Claude models (2023-2024): Anthropic's models focused on helpfulness and harmlessness

Multimodal Generative Models

e DALL-E 2 (April 2022) and DALL-E 3 (2023): Text-to-image generation with improved coherence
e Stable Diffusion (August 2022): Open-source text-to-image model that revolutionized accessibility
e Midjourney (2022-2023): Text-to-image service with distinctive aesthetic quality

2023-2025: emerging trends - what's next?

e Tool Use: Models effectively leveraging external tools and APIs to extend capabilities
e Agentic Systems: LLMs orchestrating complex tasks with planning capabilities
e Local Deployment: Smaller, more efficient models running on personal devices

Haystack Introduction

Haystack

by deepset

e Open-source Al orchestration framework by deepset

o deepset Al Platform is built on Haystack

e Provides the tools that Python developers need to build real
world, agentic Al systems

» Building blocks: Components & Pipelines

Component

@

Pipeline

Haystack

by deepset

Pipelines - Assemble components into workflows

o-0-.
o
—»C—»B\,m . @ -0

Retrieval Augmented Generation

N

(5 noggineFace 0 A7ure Qdrant () Weaviate oo @rebras Qritan*

BT pine ;neoqj @marqgo Gopenal oot
M ©} 5 q chiomia 00 CE NVIDIA. ® cohere i
@Am <ANVIDIA IR OMetaAl @ D W
Bedrock P ugging Face
@ 0penAl <YOpenSearch ¢ Pinecone .

ﬁ % Cohe're o MongoDB ,,_=’e|asticsearch IS\:;::I,:ker Amazon AAZU re !-O.i

J |
S s
J
- H‘""l s
Query Tl Query Query ’ Prompt Response
embedding embedding f
? gl Embedder [y 2 Retriever [M PromptBuilder JEES — «

Query Answer

’)

Tutorial: Creating Your First QA Pipeline with
Retrieval-Augmentation

Query

https://haystack.deepset.ai/tutorials/27_first_rag_pipeline
https://haystack.deepset.ai/tutorials/27_first_rag_pipeline

Haystack Agents

Q Agent

LM (e.g. OpenAl, G ted
Open Models

System Prompt

Python

: External APIs Haystack
Functions

Components

Haystack Use Cases

e RAG - Web RAG

e Converting, preprocessing, embedding, indexing

o Text-to-SQL Pipeline

o Advanced Retrieval (Hybrid, Sentence Window Retrieval, HyDE)
e Conversational & Chat Systems

o Agent (ReAct, Self Reflection, Multimodal, Multi-Agent)

* 563 3 o i
p ! EEEEEEEEE

em— ' EEEEEEEEEE

@ @ 1 [5 []
3N BB K-
Ml

Build with Haystack

[pip install haystack-ai] [haystack.deepset.ai]

%’ Get Started
Documentation

% Haystack Integrations
e Haystack Cookbook
M Haystack Tutorials

% Haystack Demos

¥ datacawmp
Q Discord community B Building Al Agents with Haystack

https://haystack.deepset.ai/overview/quick-start?utm_campaign=developer-relations&utm_source=weaviate-hack-day&utm_medium=presentation
https://docs.haystack.deepset.ai/docs/intro?utm_campaign=developer-relations&utm_source=weaviate-hack-day&utm_medium=presentation
https://haystack.deepset.ai/integrations?utm_campaign=developer-relations&utm_source=weaviate-hack-day&utm_medium=presentation
https://github.com/deepset-ai/haystack-cookbook
https://haystack.deepset.ai/tutorials
https://github.com/deepset-ai/haystack-demos
https://discord.com/invite/VBpFzsgRVF
https://app.datacamp.com/learn/courses/building-ai-agents-with-haystack

Haystack Demos

e https://itinerary-agent.deepset.ai/

e https://hugqgingface.co/spaces/deepset/autoquizzer

e https://hugqgingface.co/spaces/bilgeyucel/captionate

https://itinerary-agent.deepset.ai/
https://huggingface.co/spaces/deepset/autoquizzer
https://huggingface.co/spaces/bilgeyucel/captionate

Extra

Components

from haystack import component InpLSE INPEES
@component
class Component:

@component.output_types(output=str) i

def run(input_1: str, input_2: str): i

return {"output": ""} Output

Haystack: RAG and Agents framework
2021~2022 - Retrieval-Augmented Generation (RAG): Combining generation with external knowledge retrieval

Retrieval-Based Systems: fetch relevant documents from a DB based on a query.
LLMs: generate responses based on the input query using the language model.

Retrieval-Augmented Generation (RAG): RAG combines the strengths of both approaches. It first retrieves relevant
documents or passages based on the query and then uses these retrieved pieces of information to generate a more informed
and accurate response. This helps in grounding the generated responses in factual information, reducing hallucinations, and
improving overall accuracy.

Query Retriever

@ «

Your

Documents

From classic Information Systems to RAG

MU

. Documents relevant to
Document Collection
the query

Z

From classic Information Systems to RAG 0

==

il

I

umlm-l uumm{mmgw
I T T

. Documents relevant to
Document Collection
the query

e Return a list of documents or snippets, requiring users to read through multiple results
to find the information they need

e A complex or nuanced query requires a deeper understanding of the context and
relationships between different pieces of information

65

From classic Information Systems to RAG

Mllll"l e LRI

X mmmm
" EENNT |

Documents relevant to
Document Collection
the query

e What if, instead the user sifting through the results, we build a prompt composed by
retrieved snippets together with the query and feed it to an LLM?

66

From classic Information Systems to RAG

et s
San

0 &

\\'//
AN

(i =,

I
N/

\

7/
//’\\\

67

2012 - 2014: From Feature Extraction to Embedding Vectors

woman .
rl
man \ ° slower
\ father <. <on slow
cat king JU€en boy

slowest
dog \ mother k faster
daughter

fast

dogs England longer
/ he fastest
Paris / Italy \ she long
London \
/ himself longest

herself
Rome erse

v

